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Asset Pricing with Heterogeneous Investors and
Portfolio Constraints

Abstract

We evaluate the impact of portfolio constraints on financial markets in a dynamic equilibrium
pure exchange economy with one consumption good and two CRRA investors that may differ
in risk aversions, beliefs regarding the dividend process and portfolio constraints. Despite nu-
merous applications, portfolio constraints are notoriously difficult to incorporate into dynamic
equilibrium analysis without the restrictive assumption of logarithmic preferences. We provide a
tractable solution method that yields new insights on the asset pricing implications of portfolio
constraints such as limited stock market participation, margin requirements and short sales pro-
hibition without restricting risk aversion parameters. We demonstrate that in a setting where
one investor is unconstrained while the other faces an upper bound constraint on the proportion
of wealth that can be invested in stocks the model generates countercyclical market prices of risk
and stock return volatilities, procyclical price-dividend ratios, excess volatility and other patterns
consistent with empirical findings. In a setting with margin requirements we demonstrate that
under plausible parameters tighter constraints decrease stock return volatilities during the times
when the constraints are likely to bind.

Journal of Economic Literature Classification Numbers: D52, G12.
Keywords: asset pricing, dynamic equilibrium, heterogeneous investors, portfolio constraints,
stock return volatility.
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Portfolio constraints and market frictions have long been considered among key contributors
towards understanding investor behavior and equilibrium asset prices. In particular, dynamic
equilibrium models with heterogeneous investors facing portfolio constraints have extensively
been employed by financial economists to confront a wide range of phenomena such as the equity
premium puzzle, mispricing of redundant assets, role of arbitrageurs, impact of heterogeneous be-
liefs on asset prices, and stock comovements [e.g., among others, Detemple and Murthy (1997);
Basak and Cuoco (1998); Basak and Croitoru (2000, 2006); Gallmeyer and Hollifield (2008);
Pavlova and Rigobon (2008)]. However, tractable characterizations of equilibria are only ob-
tained assuming that a constrained investor has logarithmic preferences which simplifies the
analysis at the cost of assuming investor’s myopia. Despite recent developments in portfolio op-
timization, such as the duality method of Cvitanić and Karatzas (1992), portfolio constraints are
notoriously difficult to incorporate into general equilibrium analysis as well as portfolio choice
when constrained investors have more general preferences inducing hedging demands.

The assumption of logarithmic preferences is not innocuous and impedes the evaluation of
the impact of constraints on stock prices and stock return volatilities. Thus, in economic settings
with two logarithmic investors and single consumption good [e.g., Detemple and Murthy (1997);
Basak and Cuoco (1998); Basak and Croitoru (2000, 2006)] stock prices and hence stock return
volatilities are unaffected by constraints since the income and substitution effects perfectly offset
each other. When the constrained investor is logarithmic, the volatility effects of constraints have
been studied in specific settings where the other (unconstrained) investor has different preferences
[e.g., Gallmeyer and Hollifield (2008)], which requires further justification. To the best of our
knowledge this paper is the first to provide a tractable methodology for evaluating the impact of
portfolio constraints on stock prices that allows for heterogeneous non-logarithmic investors and
many different types of portfolio constraints such as limited stock market participation, margin
requirements, borrowing and short-sale constraints.

Our solution method yields new insights on the impact of portfolio constraints on stock
prices. Specifically, we focus on limited stock market participation and margin constraints,
while other portfolio constraints can be addressed along the same lines. In various settings we
investigate how the tightness of constraints affects equilibrium parameters and highlight the role
of constraints in explaining empirically observed procyclical variation of price-dividend ratios and
countercyclical variation of stock return volatilities (i.e., positive shocks to dividend growth rates
lead to higher price-dividend ratios and lower stock return volatilities), excess volatility, negative
correlation between price-dividend ratios and risk premia. Furthermore, we demonstrate that
margin requirements significantly reduce the stock market volatility.

We solve for the equilibrium in a continuous-time pure exchange economy with one consump-
tion good and two CRRA investors which differ in their risk aversions, beliefs regarding mean
dividend growth rates and portfolio constraints. Our model provides a tractable asset pricing
framework for evaluating the interactions of different types of investor heterogeneity and portfolio
constraints. For general CRRA preferences and constraints we provide tractable characteriza-
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tions of interest rates and market prices of risk which highlight the directions in which various
portfolio constraints push the equilibrium parameters. Based on these results, we develop a solu-
tion method for the efficient computation of equilibria in economies with constraints. Specifically,
we derive stock price-dividend ratios, stock return volatilities and other parameters in terms of
wealth-consumption ratios that can be computed numerically via a simple iterative procedure
with fast convergence. By employing this methodology we study the equilibrium with limited
participation, and then with borrowing and margin constraints.

We start with the limited participation model where one investor is unconstrained while the
other faces an upper bound θ̄ < 1 on the proportion of wealth invested in stocks.1 In this specific
setting we assume that the investors have identical risk aversions and beliefs and differ only in
portfolio constraints, which allows us to examine the pure effect of constraints and to eliminate
unnecessary correlation between being constrained and having specific risk aversions and beliefs.
First, we demonstrate that tighter constraints give rise to lower and procyclical interest rates, and
higher and countercyclical market prices of risk, consistently with previous theoretical studies
[e.g., Basak and Cuoco (1998)] and empirical literature [e.g., Ferson and Harvey (1991)]. We also
show that bad dividend shocks shift the distribution of consumption from the unconstrained to
the constrained investor since the latter is less exposed to stock market fluctuations.

The effect of constraints on price-dividend ratios and stock-return volatilities depends on the
relative strength of classical income and substitution effects. When the intertemporal elasticity of
substitution (IES) is greater than one and the substitution effect is stronger, price-dividend ratios
decrease while stock return volatilities inrease with tighter constraints, and vice versa when IES
is less than one and the income effect is stronger.2 The effects of constraints are more pronounced
in bad times when dividends are hit by adverse shocks than in good times. Consequently, when
the substitution effect is stronger our straightforward extension of classical Lucas economy [Lucas
(1978)] generates procyclical price-dividend ratios, countercyclical stock return volatilities and
risk premia, negatively correlated risk premia and price-dividend ratios, as well as excess stock
return volatility, consistently with empirical findings [e.g., Shiller (1981); Campbell and Shiller
(1988); Schwert (1989); Campbell and Cochrane (1999)].

To understand the intuition we note that the investment opportunities of the constrained
investor deteriorate with tighter constraints since the interest rate falls and the investor is unable

1Srinivas, Whitehouse and Yermo (2000) show that limits on both domestic and foreign equity holdings of
pension funds are in place in a number of OECD countries such as Germany (30% on EU and 6% on non-EU
equities), Switzerland (30% on domestic and 25% on foreign equities) and Japan (30% on domestic and 30% on
foreign equities), among others. Moreover, our approach allows to study the impact of passive investors that
hold a fixed fraction of their wealth in stocks, as in Chien, Cole and Lustig (2008). Samuelson and Zeckhouser
(1988) document the popularity of this strategy due to “status quo bias”, while Campbell (2006) points out
that households may limit their stock market participation in stock market due to the lack of necessary skills.
Important special case of our framework is stock market non-participation which in year 2002 accounted for 50%
of U.S. households [e.g., Guvenen (2006, 2009)].

2When the investment opportunities worsen, the income effect induces investors to decrease consumption and
save more while the substitution effect induces them to consume more and save less due to cheaper current
consumption. For CRRA preferences with risk aversion γ, IES=1/γ, the income effect dominates for IES < 1 and
the substitution effect dominates for IES > 1 while for IES = 1 both effects perfectly offset each other.
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to benefit from the increase in the market price of risk, and the effects are stronger in bad times.
As a result, the constrained investor’s wealth-consumption ratio decreases when the substitution
effect dominates and increases when the income effect dominates. Assuming further that the
substitution effect dominates [as in Bansal and Yaron (2004)], price-dividend ratio decreases
in bad times. This decrease is due to the fact that in a pure-exchange economy the price-
dividend ratio equals the ratio of aggregate wealth to aggregate consumption which in bad times
approximately equals the wealth-consumption ratio of the constrained investor since the latter
holds a large fraction of the aggregate wealth and consumption. The effect of constraints is
weaker in good times when the unconstrained investor dominates and hence the equilibrium
is closer to the equilibrium in the unconstrained economy. Therefore, the tighter constraints
decrease price-dividend ratios more in bad times than in good times, leading to a procyclical
pattern. Furthermore, since by the definition of procyclicality both bad and good shocks change
the price-dividend ratios and dividends in the same direction stocks are more volatile than the
dividends and the excess volatility is larger in bad times.

We next evaluate the impact of borrowing and margin constraints when the investors can
borrow up to a ceratin fraction of wealth or asset holdings, using stocks as a collateral. To make
the constraints binding we allow the investors to differ both in risk aversions and beliefs regarding
the mean dividend growth rate. Under our parametrization one investor is more optimistic and
less risk averse than the other, and hence the latter never binds on the constraints. As in the
case of limited participation the portfolio constraints decrease the interest rates and increase the
market prices of risk since the tighter constraints decrease the demand for borrowing pushing
the interest rates down, and increase the stock market exposure of the unconstrained investor
pushing the market prices of risk up to provide the compensation for excessive risk taking.

For plausible model parameters the price-dividend ratios are procyclical and stock returns
are more volatile than dividends, as in the limited participation case. We further demonstrate
that tighter constraints reduce stock price volatilities, consistently with empirical evidence in
Hardouvelis and Theodossiou (2002), and the effect is stronger in bad times when the constraints
are binding. Intuitively, tighter constraints limit the investors’ ability to trade on their hetero-
geneity. Therefore, their stock holdings look more homogeneous and the equilibrium parameters
move closer to the values in a homogeneous investor economy. In particular, the stock return
volatility decreases towards the volatility in the homogeneous investor economy, given by the
volatility of dividends. Whether constraints are binding or not is determined by the amount
of liquidity available for borrowing. The liquidity is supplied by the pessimist and hence its
availability depends on the pessimist’s share in aggregate wealth and consumption.

Finally, we study the probability density functions (p.d.f.) for the optimist’s consumption
share and investigate the long-run survival of the constrained and the unconstrained investors. In
a setting where the optimist has correct beliefs regarding the consumption growth we show that
in the course of time the pessimist’s consumption share declines under our model parameters,
even though it remains significant for very long periods of time. In the unconstrained benchmark
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case where the investors differ in risk aversions and beliefs we provide a closed-form expression
for the p.d.f. functions while the previous studies either generate them via Monte-Carlo simu-
lations or study their asymptotic properties [Yan (2008); Bhamra and Uppal (2010); Cvitanić,
Jouini, Malamud, and Napa (2010)]. Moreover, in the unconstrained benchmark economy we
derive the equilibrium parameters in closed form in terms of familiar hypergeometric functions,
widely employed in the literature. Our solution generalizes the solution in Longstaff and Wang
(2008) that studies the equilibrium in an unconstrained economy where one investor is twice
more risk averse than the other. Bhamra and Uppal (2010) provide an alternative closed-form
characterization of the unconstrained equilibrium in terms of infinite series.

The methodological contribution of this paper is the tractable solution method that allows
to compute the equilibrium in economies with heterogeneous investors that have different risk
aversions, beliefs and constraints. The tractability of our solution method comes from the fact
that it avoids solving the duality problem of Cvitanić and Karatzas (1992) which is difficult
to solve unless the investor is logarithmic or stocks follow geometric Brownian motions [e.g.
Cvitanić and Karatzas (1992)].3 First, following Cvitanić and Karatzas (1992) we derive optimal
consumptions in terms of the state price densities in equivalent unconstrained fictitious economies
in which the interest rates and market prices of risk are adjusted to account for the difference
in investors’ behavior in constrained economies. Then, market clearing for consumption yields
expressions for equilibrium parameters in terms of the adjustments that solve a fixed point
problem. The adjustments to interest rates and market prices of risk can be derived in terms
of investors’ wealth-consumption ratios that satisfy a system of quasilinear Hamilton-Jacobi-
Bellman equations. We solve this system of equations numerically via a simple iterative procedure
with fast convergence that requires solving a simple system of linear equations at each step.

There is a growing literature studying dynamic equilibria in continuous-time economies with
heterogeneous investors and portfolio constraints assuming that constrained investors have loga-
rithmic preferences. Basak and Cuoco (1998), Detemple and Murthy (1997), Basak and Croitoru
(2000, 2006) present equilibrium models with constrained logarithmic investors, heterogeneous
beliefs and portfolio constraints. They derive closed-form expressions for the equilibrium param-
eters but in contrast to our work all the above papers do not find the impact of constraints on
stock prices and their moments. Kogan, Makarov and Uppal (2007) derive equilibrium param-
eters in an economy with a logarithmic investor facing no-borrowing constraint and find that
all equilibrium parameters are time-deterministic. When little borrowing is permitted they nu-
merically find interest rates and market prices of risk as functions of wealth distributions but do
not consider the volatilities of stock returns. Hugonnier (2008) considers a limited participation
model with two logarithmic investors similar model and shows that under restricted participation
the stock prices implied by market clearing may contain a bubble and in the setting with multiple
stocks the equilibrium might not be unique.

3Detemple and Rindisbacher (2005) provide a methodology for solving portfolio choice problems in a partial
equilibrium setting by characterizing Cvitanić- Karatzas adjustments as solutions of backward stochastic equations.
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Gallmeyer and Hollifield (2008) study the asset pricing with short-sale constraints in the
presence of heterogeneous beliefs when the pessimist and the optimist have logarithmic and
CRRA utilities respectively. They derive asset-pricing implications of constraints by employing
Monte-Carlo simulations. Gârleanu and Pedersen (2009) study the deviations of asset prices from
the law of one price in a model with CRRA and logarithmic investors facing margin requirements.
In contrast to these works, our model does not rely on the restrictive assumption of logarithmic
preferences or specific portfolio constraints and provides the implications of portfolio constraints
for explaining dynamic patterns of price-dividend ratios, stock return volatilities, market prices
of risk and other equilibrium parameters. Guvenen (2009) studies restricted participation in
a model with heterogeneous investors with Epstein-Zin preferences and demonstrates that the
equilibrium parameters in a simulated economy are consistent with empirical findings. In contrast
to Guvenen (2009) our model allows for more general constrains, investigates the impact of the
tightness of constraints on the equilibrium parameters, and provides a tractable analysis in terms
of exact solutions rather than simulations.

Other related works include Dumas and Maenhout (2002), He and Krishnamurthy (2008), Wu
(2008) that study various equilibrium models with specific preferences and constraints. Daniels-
son, Shin and Zigrand (2009) and Rytchkov (2009) study the equilibrium implications of risk
management constraints. Gromb and Vayanos (2002, 2009), Brunnermeier and Pedersen (2009),
Fostel and Geanakoplos (2008), Geanakoplos (2009) study the implications of margin require-
ments and risk management constraints for the liquidity provision, while Gromb and Vayanos
(2010) survey the literature on limits of arbitrage. Pavlova and Rigobon (2008), and Schor-
nick (2009) study models with constrained logarithmic investors in international finance model
and multiple Lucas trees. Longstaff (2009) studies the asset pricing implications of illiquidity
in the presence of multiple Lucas trees. Cuoco and He (2001), Coen-Pirani (2005), Guvenen
(2006, 2009), Chien, Cole and Lustig (2008), Gomes and Michaelides (2008), Dumas and Lya-
soff (2008) solve for equilibrium in various discrete-time incomplete market settings with CRRA
and Epstein-Zin preferences. Our paper also contrubutes to growing literature that studies the
equilibrium in the economies with heterogeneous unconstrained investors, such as Dumas (1989),
Wang (1996), Zapatero (1998), Chan and Kogan (2002), Longstaff and Wang (2008), Yan (2008),
Berrada, Hugonnier and Rindisbacher (2007), Gârleanu and Panageas (2008), Berrada (2009),
Bhamra and Uppal (2009, 2010), Borovička (2009), Dumas, Kurshev and Uppal (2009), Wein-
baum (2009), Xiong and Yan (2009), Cvitanić, Jouini, Malamud and Napp (2010), Cvitanić and
Malamud (2010a, 2010b), Xiouros and Zapatero (2010).

The remainder of the paper is organized as follows. Section 1 provides the economic setup.
In Section 2, we derive interest rates, market prices of risk and other equilibrium parameters
and discuss their properties. In Section 3 we illustrate our solution method by computing the
equilibrium in models with limited stock market participation, and with margin requirements.
Section 4 concludes, Appendix A provides the proofs and Appendix B provides further details
for our numerical method.
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1. Economic Setup

We consider a continuous-time infinite horizon economy with two heterogeneous investors and
one consumption good generated by a Lucas tree. The investors, in general, differ in their risk
aversions, beliefs about the dividend growth rates, and portfolio constraints. In this Section
we discuss the information structure of the economy, the investors’ optimization, and define the
equilibrium.

1.1. Information Structure and Securities Market

The uncertainty is represented by a filtered probability space (Ω, {Ft},P), on which is defined
a Brownian motion w. The stochastic processes are adapted to the filtration {Ft, t ∈ [0,∞)}
generated by w. There are two heterogeneous investors that trade continuously in two securities,
a riskless bond in zero net supply with instantaneous interest rate rt and a stock in positive net
supply, normalized to one unit. The stock is a claim to an exogenous strictly positive stream of
dividends δt following a stochastic process:

dδt = δt[µδtdt+ σδtdwt], (1)

where µδt and σδt in general can be stochastic. Even though the investors observe the same
dividend process they have different beliefs about growth rate µδt but agree on the volatility σδt
which, unlike µδt, is easier to estimate from the quadratic variation [e.g., Merton (1980)].4 We
assume that one investor is optimistic (i = o) while the other is pessimistic (i = p), so that the
optimist has a higher prior regarding growth rate µδt at the initial date.

Effectively, investors have their own probability spaces (Ω, {F it},Pi) endowed with subjective
probability measures Pi which are equivalent to probability measure P. The investors infer the
information by observing a stream of dividends δt, so that their filtrations {F it} coincide with the
augmented filtration {Fδt }, generated by δt. From investor i’s perspective the dividends evolve
as follows:

dδt = δt[µiδtdt+ σδtdw
i
t], i = o, p, (2)

where wit denotes a Brownian motion under the investor’s probability measure Pi, and µoδ0 ≥
µpδ0. If the investors update their beliefs in a Bayesian fashion parameters µiδt are given by
µiδt = Ei[µδt|Fδt ], where Ei[·] denotes the expectation under the subjective probability measure.
From Girsanov’s Theorem and the filtering theory in Lipster and Shiryaev (1977) it follows that
Brownian motions wit are related as follows:

dwot = dwpt −∆δtdt, with ∆δt =
µoδt − µ

p
δt

σδt
. (3)

4The assumption that the investors agree to disagree on dividend growth rates has been commonly made in the
literature in the context of general equilibrium analysis [e.g., Detemple and Murthy (1997), Zapatero (1998), Basak
(2000, 2005), Gallmeier and Hollifield (2008), Yan (2008), Xiong and Yan (2009), Bhamra and Uppal (2010)].
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We consider equilibria in which bond prices, Bt, and stock prices, St, follow processes:

dBt = Btrtdt, (4)

dSt + δtdt = St[µtdt+ σtdwt],

= St[µitdt+ σtdw
i
t], i = o, p, (5)

where interest rate rt, stock mean return µt, and volatility σt are stochastic processes determined
in equilibrium, and bond price at time 0 is normalized so that B0 = 1. The investors agree on
the stock and bond prices but disagree on expected stock mean return. From (3) and (5) it can
easily be shown that the relation (3) between Brownian motions wot and wpt imposes the following
consistency condition on the beliefs regarding stock and dividend growth rates:

µot − µpt
σt

=
µoδt − µ

p
δt

σδt
≡ ∆δt. (6)

The consistency condition (6) allows us to formulate the following definition.

Definition 1. Stochastic process ∆δt which quantifies the disagreement on stock returns and
dividend growth rates is called the disagreement process.

1.2. Portfolio Constraints and Investors’ Optimization

The optimist (i = o) is endowed with s units of stock and −b units of bond, while the pessimist
(i = p) is endowed with 1−s units of stock and b units of bond. The investors choose consumption,
cit, and an investment policy, {αit, θit}, where αit and θit denote the fractions of wealth invested
in bonds and stocks, respectively, and hence, αit+θit = 1. Investor i’s wealth process Wit evolves
as:

dWit =
[
Wit

(
rt + θit(µit − rt)

)
− cit

]
dt+Witθitσtdw

i
t, i = o, p, (7)

and the investment policies are subject to portfolio constraints:

θit ∈ Θi = [θi, θi], i = o, p. (8)

The special cases of constraint (8) include restricted participation (θ = 0, θ = 0), limited
participation (θ = 0, θ < 1), borrowing constraints (θ ≥ 1), short-sale constraints (θ = 0), and
margin requirement constraint m+θ

+ + m−θ
− ≤ 1 [e.g., Brunnermeier and Pedersen (2009)],

where m± ≥ 0, θ+ = max(θ, 0), and θ− = −min(θ, 0).5

The investors have CRRA utility function ui(c) over consumption, given by:

ui(ct) =
c1−γi
t

1− γi
, i = o, p, (9)

5For simplicity, we assume that θi and θi in (8) are constants. However, our solution method can also handle the
case when these parameters are time-varying, e.g. depend on stock volatility σt, as in risk management constraints
in Rytchkov (2009).
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and are, in general, heterogeneous in risk aversion coefficients γi. The case γi = 1 corresponds to
logarithmic utility ln(ct). Each investor i (i = o, p) maximizes expected discounted utility over
a stream of consumption cit with time discount ρ > 0:

max
cit, θit

E
[∫ ∞

0
e−ρtui(cit)dt

]
, (10)

subject to budget constraint (7), no-bankruptcy constraint Wt ≥ 0, and portfolio constraints (8).

1.3. Equilibrium

Definition 2. An equilibrium is a set of parameters {rt, µit, σt}i∈{o,p} and of consumption and
investment policies {c∗it, α∗it, θ∗it}i∈{o,p} such that consumption and investment policies solve dy-
namic optimization problem (10) for each investor, given price parameters {rt, µit, σt}i∈{o,p}, and
consumption and financial markets clear, i.e.,

c∗ot + c∗pt = δt,

α∗otW
∗
ot + α∗ptW

∗
pt = 0,

θ∗otW
∗
ot + θ∗ptW

∗
pt = St,

(11)

where W ∗ot and W ∗pt denote optimal wealths of the optimist and pessimist, respectively.

2. General Equilibrium with Constraints

This Section characterizes the equilibrium in economies with constrained investors. In Subsection
2.1 by employing the duality method of Karatzas and Cvitanić (1992) we recover expressions for
equilibrium interest rates and market prices of risk. These expressions highlight the impact
of risk-sharing and attitude towards risk on the equilibrium parameters. In Subsection 2.2 we
characterize the remaining equilibrium parameters, such as price-dividend ratios and stock return
volatilities, in terms of investors’ wealth-consumption ratios that we derive numerically by solving
a system of PDEs via an efficient numerical procedure.

2.1. Characterization of Equilibrium

We start by characterizing optimal consumptions of investors in a partial equilibrium setting
in which the investment opportunities are taken as given, and then obtain the interest rate rt,
and the market price of risk κt, defined as Sharpe ratio (µt − rt)/σt, from the consumption
clearing condition. Solving the optimization problem of a constrained investor is a challenging
task even at a partial equilibrium level. We here follow the approach of Cvitanić and Karatzas
(1992) and characterize constrained investors’ optimal consumptions by embedding the partial
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Table 1
Effective Domains and Support Functions

Case Constraint Υ f(ν|ν ∈ Υ)

(a) θ ∈ R 0 0

(b) θ = 0 R 0

(c) θ ≤ θ, θ > 0 ν ≤ 0 −νθ
(d) θ ≥ θ, θ < 0 ν ≥ 0 −νθ
(e) θ ≤ θ ≤ θ, θ ≤ 0 R max(−ν, 0)θ −max(ν, 0)θ

equilibrium economy into an equivalent fictitious complete-market economy with bond and stock
prices following dynamics with adjusted parameters:

dBt = Bt[rt + f(ν∗it)]dt, (12)

dSt + δtdt = St[(µit + ν∗it + fi(ν∗it))dt+ σtdw
i
t], i = o, p, (13)

where fi(ν) is the support function for the set of portfolio constraints Θi, defined as:

fi(ν) = sup
θ∈Θi

(−νθ), (14)

and ν∗it solve so called dual optimization problem, defined in Cvitanić and Karatzas (1992), and
lie in the effective domains for the support function, given by:

Υi = {ν ∈ R : fi(ν) <∞}. (15)

As demonstrated in Cvitanić and Karatzas (1992) the constrained investor’s optimal consump-
tions and investment strategies in the fictitious economy (12)–(13) coincide with those in the
original constrained economy. Table 1 presents the effective domains and the support functions
on the effective domains for various portfolio constraints.

It follows from the dynamics of bond and stock prices in fictitious economy (12)–(13) that
the corresponding state prices of investors, ξit, evolve as:

dξit = −ξit[ritdt+ κitdw
i
t], i = o, p, (16)

where rit and κit denote the adjusted riskless rate and market price of risk in fictitious economy
i, given by:

rit = rt + fi(ν∗it), κit =
µit − rt
σt

+
ν∗it
σt
, i = o, p. (17)

Throughout this Section we assume that the solutions to dual optimization problems exist
and since the fictitious economies are complete, the marginal utilities of optimal consumption
are given by [e.g., Huang and Pagés (1992); Cuoco (1997)]:

e−ρt(c∗it)
−γi = ψiξit, i = o, p, (18)
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for some constants ψi > 0. As shown in Cvitanić and Karatzas (1992), optimal consumption
and investment decisions of the constrained investor are equivalent to those of the unconstrained
investor in the fictitious economy with adjusted parameters.

Next we characterize the equilibrium in terms of adjustments ν∗it and the optimist’s share in
the aggregate consumption, defined as:

yt =
c∗ot
δt
. (19)

Since the investors are heterogeneous in utilities, beliefs, and constraints, the consumption share
yt is in general stochastic, following the dynamics:

dyt = −yt[µytdt+ σytdwt]

= −yt[µiytdt+ σytdw
i
t], i = o, p.

(20)

To determine the interest rates and market prices of risk both in the original and fictitious
economies we substitute optimal consumptions from first order condition (18) into consumption
clearing condition in (11), apply Itô’s Lemma to both sides and recover equilibrium parameters
in terms of adjustments ν∗it by matching the drift and volatility terms. Similarly, we derive
the parameters of consumption share process yt by substituting the optimal consumption c∗ot
from first order conditions (18) in equation (19) for yt, applying Itô’s Lemma to both sides and
matching the terms.

This approach is similar to the approach in Basak and Cuoco (1998), Cuoco and He (2001),
Basak (2000, 2005) among others that characterize the equilibrium in terms of the ratio of
marginal utilities, which serves as a convenient state variable in their models. The following
Proposition summarizes our results.

Proposition 1. If there exists an equilibrium, interest rate rt, market price of risk κt = (µt −
rt)/σt, drift µyt and volatility σyt of optimistic investor’s consumption share yt in the original
economy under true probability measure P are given by:

rt = ρ+ Γtµ̄δt −
ΓtΠt

2
σ2
δt

+ Γ3
t

yt(1− yt)
γ2
oγ

2
p

[(
(γo − γp)σδt −∆δt

)
∆δt +

1
2

(
1 +

γoγp
Γt

)
∆2
δt

]
+ Γ3

t

yt(1− yt)
γ2
oγ

2
p

[(
(γo − γp)σδt −∆δt

)ν∗ot − ν∗pt
σt

− 1
2

(
1 +

γoγp
Γt

)(ν∗ot − ν∗pt
σt

)2]
(21)

− Γt
yt
γo
fo(ν∗ot)− Γt

1− yt
γp

fp(ν∗pt),

κt = Γtσδt +
µδt − µ̄δt
σδt

− Γt
yt
γo

ν∗ot
σt
− Γt

1− yt
γp

ν∗pt
σt
, (22)

σyt = Γt
1− yt
γoγp

(
(γo − γp)σδt −∆δt −

ν∗ot − ν∗pt
σt

)
, (23)

µyt = µδt − σytσδt −
rt + f(ν∗ot)− ρ

γo
− (σδt − σyt)

µδt − µoδt
σδt

− 1 + γo
2

(σδt − σyt)2, (24)
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where Γt and Πt denote relative risk aversion and prudence parameters of a representative in-
vestor, given by:6

Γt =
γoγp

γo(1− yt) + γpyt
, Πt = Γ2

t

(1 + γo
γ2
o

yt +
1 + γp
γ2
p

(1− yt)
)
, (25)

and µ̄δt is a weighted average of the investors’ subjective dividend growth rates µiδt, given by:

µ̄δt =
γpyt

γo(1− yt) + γpyt
µoδt +

γo(1− yt)
γo(1− yt) + γpyt

µpδt. (26)

The equilibrium parameters in fictitious unconstrained economies under investors’ subjective be-
liefs are given by:

rot = rt + fo(ν∗ot), rpt = rt + fp(ν∗pt), (27)

κot = γo(σδt − σyt), κpt = γp

(
σδt + σyt

yt
1− yt

)
, (28)

µoyt = µoδt − σytσδt −
rt + f(ν∗ot)− ρ

γo
− 1 + γo

2
(σδt − σyt)2, µpyt = µoyt −∆δtσyt. (29)

Proposition 1 provides the equilibrium parameters as functions of consumption share yt, ad-
justment parameters ν∗it, and stock return volatility σt. In the unconstrained case the adjustments
ν∗it are equal to zero [case (a) in Table 1] and the expressions in Proposition 1 give the closed form
expressions for the equilibrium parameters in the unconstrained economy, previously derived in
Basak (2000, 2005). When the investors face binding portfolio constraints the terms involving
ν∗it capture the impact of constraints on the risk sharing and the demand for financial securities.

Expression (21) decomposes the interest rate into two groups of terms. First four terms give
the closed-form expression for the interest rate in an unconstrained economy with heterogeneous
investors. Specifically, the first three terms look similar to the interest rate in a standard Lucas
economy, and capture the effects of risk aversion Γ and prudence Π of the representative investor.
The remaining terms capture the impact of heterogeneous beliefs and portfolio constraints. Simi-
larly, the expressions for the market price of risk (22) and the volatility of optimist’s consumption
share (23) explicitly separate the effects of heterogeneity in preferences and beliefs and portfolio
constraints.

Even though finding the adjustments ν∗it is a challenging problem (addressed in Subsection
2.2) their signs and hence the directions in which they affect the equilibrium can explicitly be
identified by computing the effective domains Υi, as demonstrated in Table 1. As an illustration

6Similarly to Basak (2000, 2005) it can be demonstrated that the equilibrium in this economy is equivalent to
the equilibrium in an economy with a representative investor with a utility function given by:

u(c;λ) = max
co+cp=c

uo(co) + λup(cp),

where λ = ξo/ξp. The expressions for the relative risk aversion Γt and prudence Πt of the representative investor
in (25) are special cases of those in Basak (2000, 2005), derived for general utility functions.
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consider the case where the optimist faces a borrowing constraint (θot ≤ θ̄, θ̄ > 1) while the
pessimist faces a short-sale constraint (θpt ≥ 0), and hence ν∗ot ≤ 0 and ν∗pt ≥ 0 [cases (c) and
(d) in Table 1]. Moreover, we will assume that stock return volatility σt is positive (i.e. stock
returns are positively correlated with dividend growth) and (γo− γp)σδt−∆δt < 0, which means
that the optimist’s risk aversion is not very high while the pessimist’s risk aversion is not very
low, so that the constraints are likely to bind.

The impact of constraints on interest rates is ambiguous since rt is a quadratic function of
the adjustments. Under the assumptions above, in the expression for interest rates in (21) the
fifth quadratic term is positive when the adjustments ν∗it are small and negative when they are
large, the sixth term is negative and the last term is equal to zero [case (d) in Table 1]. Therefore
the sum of terms involving ν∗it can both be positive or negative. In the numerical examples
in Section 3 we demonstrate that the interest rates always go down with tighter borrowing
constraint (i.e. when θ̄ decreases). Intuitively, when θ̄ < 1 tighter constraint θot ≤ θ̄ increases
the constrained investor’s demand for bonds pushing the interest rates downwards. When θ̄ > 1
tighter constraint reduces the constrained investor’s leverage, decreasing the interest rates. We
note that maximizing rt with respect to ν∗it and subject to constraints ν∗it ∈ Υi gives an explicit
upper bound for interest rates in terms of exogenous model parameters, which however is beyond
our scope.

The signs of the adjustments in Table 1 imply that binding borrowing constraints increase
while the short-sale constraints decrease the market price of risk κt. Intuitively, binding borrow-
ing constraint causes the optimist to hold less stocks, as compared to the unconstrained case,
holding the consumption share yt fixed. Therefore, for the market to clear, the market price
of risk increases in order to induce the pessimist to increase the exposure to stocks. Similarly,
if the pessimist cannot short-sale stocks the optimist should hold less stocks, and hence the
market price of risk goes down to equilibrate the supply and demand. Furthermore, expression
(23) demonstrates that the optimist’s consumption share volatility σyt goes up if either of the
constraints binds.

Proposition 1 also allows to obtain the expressions for consumption growth volatilities of
investors which capture the effect of risk sharing. Suppose, under the true probability measure
P the optimal consumptions evolve as follows:

dc∗it = c∗it[µc∗i tdt+ σc∗i tdwt], i = o, p. (30)

The expressions for the volatilities σc∗i t can be obtained by applying Itô’s Lemma to optimal
consumptions in (18). Corollary 1 reports the results.

Corollary 1. The optimal consumption growth volatilities of the investors are given by:

σc∗ot = σδt − σyt, σc∗pt = σδt +
yt

1− yt
σyt. (31)

Section 3 provides further analysis of consumption growth volatilities σc∗i t in specific equilibrium
settings.
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2.2. Characterization of Adjustments and Stock Return Volatilities

In this subsection we tackle the problem of finding the adjustments ν∗it. We then demonstrate
how to derive all the equilibrium parameters if the adjustments are known. On the other hand,
we argue that if the equilibrium parameters are known the adjustments can be obtained from the
complementary slackness conditions in Karatzas and Shreve (1998). Therefore, the pair {ν∗ot, ν∗pt}
emerges as a fixed point of a non-linear mapping which can be found by solving a system of
two Hamilton-Jacobi-Bellman (HJB) equations for investors’ wealth-consumption ratios. Even
though in equilibrium the coefficients of HJB equations themselves depend on the sensitivities
of wealth-consumption ratios with respect to state variable yt, we demonstrate that the time-
independent solutions can easily be obtained via an iterative procedure with fast convergence that
at each step requires solving a simple system of linear algebraic equations. This approach avoids
solving the dual optimization problem in Cvitanić and Karatzas (1992) which is very difficult
unless investors are logarithmic or stock prices follow process (5) with deterministic coefficients.

Our solution method does not rely on a widely used assumption of a logarithmic constrained
investor [e.g., Detemple and Murthy (1997); Basak and Cuoco (1998); Basak and Croitoru (2000,
2006); Kogan, Makarov and Uppal (2003); Gallmeyer and Hollifield (2008); Hugonnier (2008);
Pavlova and Rigobon (2008); Schornick (2009)] which allows for tractability in specific settings at
the cost of investor’s myopia inherent in logarithmic preferences.7 We note that the tractability
of logarithmic preferences is limited to specific settings and constraints (discussed in Section 3.2)
where the HJB equations are linear. However, in a model where the unconstrained investor has
CRRA utility while the logarithmic investor faces restricted participation constraint or margin
requirements the HJB equation for the unconstrained investor remains nonlinear.

In Subsection 2.1 we have obtained the equilibrium parameters in terms of adjustments ν∗it
and highlighted the effect of constraints on equilibrium. While the analysis in Subsection 2.1
goes through for general dividend processes and beliefs, in order to recover the adjustments ν∗it,
following the literature we make three simplifying assumptions.

Assumption 1. The dividend process (1) follows a geometric Brownian motion under the true
probability measure P:

dδt = δt[µδdt+ σδdwt],

where µδ and σδ are constants.

Assumption 2. The investors do not update their beliefs, and each of them perceives the dividend
process as a geometric Brownian motion:

dδt = δt[µiδdt+ σδdw
i
t], i = o, p. (32)

7The tractability of logarithmic preferences comes from the fact that the optimal investment policies θ∗it of con-
strained logarithmic investors can easily be computed in closed form both in the original and fictitious economies.
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The optimist (i = o) rationally believes that µoδt = µδ while the pessimist (i = p) permanently
underestimates the expected dividend growth rate so that µδ > µpδ .

Assumption 3. The optimist (i = o) faces constraint:

θot ≤ θ̄, (33)

where θ̄ can be any non-negative number, while the pessimist (i = p) is unconstrained.

Assumptions 1 and 2 guarantee that the equilibrium parameters depend only on one state
variable, the optimist’s consumption share yt, which significantly facilitates the tractability. Both
assumptions are commonly employed in the literature [e.g., Chan and Kogan (2002), Gallmeyer
and Hollifield (2008), Bhamra and Uppal (2009, 2010), Yan (2008) and Yan (2008), Bhamra and
Uppal (2009, 2010), respectively]. The fact that investors do not update their beliefs is unlikely
to affect our results for plausible model parameters due to very slow convergence of beliefs in the
case of Bayesian updating.8

Assumption 3 for simplicity restricts the analysis to constraint (33) while short-sale con-
straints can be analyzed similarly. Since in our analysis below it turns out that in equilibrium
θ∗ot ≥ 0, the case θ̄ < 1 describes limited market participation while the case θ̄ ≥ 1 corresponds to
borrowing constraints or margin requirements for collateralized borrowing (e.g. in repo markets).
Specifically, in the latter case constraint (33) is equivalent to constraint θot ≤ 1 + mθot which
limits the leverage ratio (i.e. debt to wealth ratio θot − 1) by a proportion m < 1 of the stock
holding [e.g., Brunnermeier and Pedersen (2009)].

For convenience, we solve the optimization problem of the constrained optimist in an equiv-
alent fictitious unconstrained economy in which the investor maximizes objective function (10)
subject to the budget constraint:

dWot =
[
Wot

(
rt + f(ν∗ot) + θot(µot − rt + ν∗ot)

)
− cot

]
dt+Wotθotσtdw

o
t , (34)

where ν∗ot and f(ν∗ot) are adjustments to stock mean returns and riskless rates respectively. By
applying dynamic programming we find that the indirect utility functions of investors, which we
denote as Jit = Ji(Wit, yt, t), satisfy the following HJB equations:

0 = max
ci,θi

{
e−ρt

c1−γi
it

1− γi
+
∂Jit
∂t

+
[
Wit

(
rit + θitσtκit

)
− cit

] ∂Jit
∂Wit

−ytµiyt
∂Jit
∂yt

+
1
2

[
W 2
itθ

2
itσ

2
t

∂2Jit
∂W 2

it

− 2Witθitσtytσyt
∂2Jit

∂Wit∂yt
+ y2

t σ
2
yt

∂2Jit
∂y2

t

]}
,

(35)

8If dividends follow a geometric Brownian motion, investors update their beliefs in a Byesian fashion and have
normally distributed initial priors µiδ0 ∼ N(µ̂iδ, σ̂iδ) with σ̂pδ = σ̂oδ it turns out that the disagreement process is
explicitly given by [e.g., Lipster and Shiryaev (1977); Basak (2000, 2005)]:

∆δt = ∆δ0

(
σ2
δ

σ̂pδt+ σ2
δ

)σδ
.

Assuming further that σ̂pδ = σδ and taking σδ = 3.2% as in Campbell (2003), we obtain that it takes 100 years
for the disagreement ∆δt to decrease by 20%.
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subject to transversality condition Et[JiT ]→ 0 as T →∞, which guarantees the convergence of
the integral in investors’ optimization (10). The HJB equations in (35) are standard except for
the fact that they are in terms of the parameters of the fictitious unconstrained economy.

We conjecture that the indirect utility functions admit the following representation:

Ji(Wit, yt, t) = e−ρt
W 1−γi
it

1− γi
Hi(yt, t)γi , i = o, p. (36)

Then, from the first order conditions with respect to consumption we obtain:

c∗it =
Wit

Hit
, i = o, p, (37)

where Hit is a shorthand notation for investor i’s wealth-consumption ratio Hi(y, t). By substitut-
ing indirect utility functions (36) into HJB equations it can be verified that wealth-consumption
ratios satisfy the following PDEs:

∂Hit

∂t
+
y2
t σ

2
yt

2
∂2Hit

∂y2
t

−yt
(
µiyt+

1− γi
γi

κitσyt

)∂Hit

∂yt
+
(1− γi

2γi
κ2
it+(1−γi)rit−ρ

)Hit

γi
+1 = 0, i = o, p,

(38)
where κit and rit denote riskless rate and price of risk in a fictitious economy as defined in (17).
Moreover, optimal investment policies for investors 1 and 2 are given by:

θit =
1
γiσt

(
κit − γiσyt

∂Hit

∂yt

yt
Hit

)
, i = o, p. (39)

Since the horizon is infinite we look for time-independent solutions Hi(y) of equations (38).
Conveniently, since the fictitious economy is complete the equations for wealth-consumption
ratios in (38) are linear if the equilibrium parameters κit, rit, and µiyt are known. However, as
demonstrated in Proposition 1, these parameters depend on adjustments ν∗it and stock return
volatility σt, which in turn are the functions of wealth-consumption ratios Hit, making the HJB
equations quasilinear. Proposition 2 summarizes our results and provides a characterization of
consumption share and stock return volatilities, σyt and σt, price-dividend ratio Ψt, and the
adjustments ν∗it in terms of wealth-consumption ratios.

Proposition 2. If there exists an equilibrium such that σt > 0 and σyt is a continuous function
of yt in (0, 1), the volatility of consumption share σyt is given by:

σyt =


max

{((γo − γp)σδ −∆δ)(1− yt)
γo(1− yt) + γpyt

,
(1− θ̄)σδ

Gt

}
, if Gt > 0,

((γo − γp)σδ −∆δ)(1− yt)
γo(1− yt) + γpyt

, if Gt ≤ 0,

(40)

where Gt is defined as:

Gt = 1 +
∂Hot

∂yt

yt
Hot
− θ̄ ∂Ψt

∂yt

yt
Ψt
.
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Price-dividend ratio Ψt ≡ St/δt and stock return volatility σt are given by:

Ψt = ytHot + (1− yt)Hpt, σt = σδ − σyt
∂Ψt

∂yt

yt
Ψt
. (41)

The adjustment parameters are given by:

ν∗ot = σt

(
(γo − γp)σδ −∆δ − σyt

γo(1− yt) + γpyt
1− yt

)
, ν∗pt = 0. (42)

Wealth-consumption ratios Hit satisfy HJB equations (38), while constrained investor’s consump-
tion share y0 at time t = 0 solves the equation:

s(1− y0)Hp(y0, 0)δ0 − (1− s)y0Ho(y0, 0)δ0 = b. (43)

Proposition 2 completes the description of equilibrium. It identifies the adjustment param-
eter ν∗ot and stock return volatility σt in terms of wealth-consumption ratios satisfying HJB
equations (38), while Proposition 1 identifies the other equilibrium parameters in terms of ν∗ot
and σt. We derive volatilities σt and σyt assuming that σt > 0 and σyt is continuous. After
computing the equilibrium we verify that these conditions are indeed satisfied and the param-
eters comprise the equilibrium. The characterization of all equilibrium parameters in terms of
wealth-consumption ratios implies that the coefficients in HJB equations (38) themselves depend
on wealth-consumption ratios Hit, which gives a system of two quasilinear HJB equations.

Appendix A provides the proof of Proposition 2. We here just note that price dividend ratio
Ψt in (41) is derived from the market clearing conditions (11), while volatility σt is derived by
applying Itô’s Lemma to stock price St ≡ Ψtδt. The adjustment parameter ν∗pt is zero since the
pessimist is unconstrained [case (a) in Table 1], while ν∗ot can be found from a complementary
slackness condition θ∗otν

∗
ot + f(ν∗ot) = 0 derived in Karatzas and Shreve (1998) which for the case

of constraint (33) takes the form:
(θ∗ot − θ̄)ν∗ot = 0. (44)

Therefore, if the constraint is not binding condition (44) implies that ν∗ot = 0, while if the
constraint is binding ν∗ot can be found from the condition θ∗ot = θ̄. Consequently, the expression
for volatility σyt in terms of adjustments in (23) on one hand gives expression (40) for σyt, and
on the other hand gives the adjustment in terms of σyt in (42).

Remark 1 (Two Constrained Investors). In a model where the pessimist faces a short-sale
constraint while the optimist faces a margin requirement, volatility σyt can be derived along the
same lines as in Proposition 2. However, when both constraints bind simultaneously, from the
expression for σyt in terms of adjustments given in (23) it is only possible to pin down (ν∗ot−ν∗pt),
but not the individual adjustments ν∗it, which leads to the multiplicity of equilibrium adjust-
ments. From the expressions for equilibrium parameters in (27)–(29) it follows that parameters
κit and µiyt can be uniquely determined if σyt is known while fictitious interest rates rit require
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the individual adjustments ν∗it. Therefore, as demonstrated in Detemple and Murthy (1997),
simultaneously binding constraints generate discontinuous interest rates. In a setting with log-
arithmic investors in Detemple and Murthy there is no impact of constraints and interest rate
discontinuities on stock prices. However, in our setting the multiplicity of adjustments is likely
to lead to endogenous jumps in stock prices, which is a challenging direction for future research.
We also note that in a setting where investors differ only in risk aversions and have identical
beliefs the short-sale constraint never binds while margin requirement constraint binds only for
a less risk averse investor, which endogenously leads to a setting with one constrained investor.

2.3. Computation of Equilibrium

We next solve for time-independent solutions of PDEs (38) Hi(yt) which correspond to the
infinite horizon case. Before proceeding to the general case, we note that there are four important
special cases where the equilibrium interest rate rt, market prices of risk κt, drift µiyt and volatility
σyt can be obtained in closed form as functions of consumption share yt both in the original and
fictitious economies, and hence the HJB equations (38) are linear and easier to solve. First case
is where both investors are logarithmic. In this case, the wealth-consumption ratios are given by
Hit = 1/ρ, i = o, p [e.g., Detemple and Murthy (1997); Basak and Cuoco (1998)], and there is
no impact of constraints on stock prices.

Second case is the case of no-borrowing constraint (θ̄ = 1) assuming (γo − γp)σδ − ∆δ ≤ 0
(for the constraint to be binding). From formulas (40) and (41) it can be seen that σyt = 0 and
σt = σδ. Therefore, the HJB equations (38) become first order linear ODEs that can be solved in
closed form. Then, price-dividend ratio Ψt can be obtained from (41) while formulas (28)–(29)
provide the remaining equilibrium parameters. Since σyt = 0, consumption share yt and hence
all the equilibrium parameters are deterministic.9

Third case is when the constrained investor has logarithmic utility and faces specific con-
straints, e.g. restricted stock market participation (i.e. γo = 1, θ̄ = 0) or short-sale constraints.
Since for the logarithmic investor Hot = 1/ρ it can easily be verified that σyt in (40) depends
only on yt whenever θ̄ = 0. The closed-form expressions for market prices of risk κit, interest
rate rt and drift parameters µiyt as functions of consumption share yt are then obtained from
formulas (28)–(29), similarly to Basak and Cuoco (1998). The case of short-sale constraints can
be analyzed in a similar way. We note also that for the case of margin requirements the HJB
equations remain nonlinear.

Finally, the HJB equations are linear when the constraint never binds (i.e. θ̄ very large)
9In the economy with θ̄ = 1 Kogan, Makarov, and Uppal (2007) provide solutions in the case when constrained

investor is logarithmic and the investors have identical beliefs. They find that constraint θt ≤ 1 decreases interest
rates and increases market prices of risk. However, this constraint does not generate stochastic variation in
equilibrium parameters, which is in contrast to our model with θ̄ 6= 1. Bhamra and Uppal (2009) consider an
economy with heterogeneous risk aversion and demonstrate that in the absence of a risk-free asset the equilibrium
parameters are deterministic.

17



and hence ν∗ot = 0. The unconstrained equilibrium is a convenient benchmark against which we
compare our main results. We here provide a tractable solution in terms of familiar hyperge-
ometric functions commonly used in the literature [e.g., Ingersoll and Ross (1992); Cochrane,
Longstaff and Santa-Clara (2008); Longstaff and Wang (2008); Longstaff (2009); Martin (2009)]
by extending the approach of Longstaff and Wang (2008).10 For brevity, Proposition 3 below
reports only the price-dividend ratio, while the interest rates and market prices of risk can be
obtained from the expressions in Proposition 1, and σt can be obtained in closed form from (41).

Proposition 3. If there exists an equilibrium in the economy with two unconstrained heteroge-
neous investors the equilibrium price-dividend ratio is given by:

Ψt =
1

|a2|
√

2b

[
− 1

γo + ϕ−
2F1

(
(1− γp

γo
)ϕ− − γp, 1, 1− γp −

γp
γo
ϕ−; 1− yt

)
+

(
1− γp

γo

) 1− yt
1− γp − γp

γo
ϕ−

2F1

(
(1− γp

γo
)ϕ− + 1− γp, 1, 2− γp −

γp
γo
ϕ−; 1− yt

)
+

γp
γo

1
ϕ+

2F1

(
(1− γp

γo
)ϕ+ − γp, 1, 1 + ϕ+; yt

)
+

(
1− γp

γo

)1− yt
ϕ+

2F1

(
(1− γp

γo
)ϕ+ + 1− γp, 1, 1 + ϕ+; yt

)]
,

(45)
where

ϕ± =
a1 ± |a2|

√
2b

a2
2

,

a1 =
1
γo

[
(γp − γo)

(
µpδ −

σ2
δ

2

)
− ∆2

δ

2
−
(

(γo − γp)σδ −∆δ

)
(1− γp)σδ

]
,

a2 = −(γo − γp)σδ −∆δ

γo
, b = ρ− (1− γp)µpδ +

γp(1− γp)σ2
δ

2
+

a2
1

2a2
2

,

(46)

and 2F1(x1, x2, x3; y) denotes a hypergeometric function, given in Appendix A.

To solve the HJB equations (38) in the general case we first obtain boundary conditions
at y = 0 and y = 1 for HJB equations (38) by passing to the limit when yt tends to 0 or 1,
respectively, as discussed in Appendix B. Next, there are two ways to solve for equilibrium.
The first one is the fixed point iteration method, widely used in the literature [e.g., Chien, Cole
and Lustig (2008), Gomes and Michaelides (2008), Guvenen (2009)], in which we use candidate
wealth-consumption ratios Hi,n(y) at step n to compute all the equilibrium parameters, and
hence the coefficients of equations (38), and then solve numerically the resulting linear HJB
equations to obtain wealth consumption ratios Hi,n+1(y) at step n+ 1. This method gives very

10Yan (2008) derives closed-form solutions when investors have identical integer risk aversions, while Longstaff
and Wang (2008) derive the equilibrium in terms of hypergeometric functions when one investor is twice more risk
averse than the other and they have homogeneous beliefs. Chabakauri (2009) generalizes the result in Yan (2008)
for any positive risk aversion. Bhamra and Uppal (2010) derive analytical infinite series expansions for equilibrium
parameters when the investors additionally differ in risk aversions.
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fast convergence if the initial conjectured wealth-consumption ratios at step 0 are not very far
from the equilibrium ones.

The second way is to keep time-dependence in HJB equations (38), fix a large horizon parame-
ter T , choose a starting value for Hi(y, T ) and then solve the equations backwards in time using a
modification of Euler’s finite-difference method until the solutions converge to time-independent
functions Hi(y). This approach is similar to the successive iterations method for solving Bellman
equations in discrete time [e.g., Ljungqvist and Sargent (2004)] when the value function is set
equal to a certain function (usually zero) at a distant time in the future and then the value
functions at earlier dates are obtained by solving equations backwards. To solve equations (38)
we replace the derivatives by their finite-difference analogues letting the time and state variable
increments denote ∆t ≡ T/M and ∆y ≡ 1/N , where M and N are integer numbers. To solve
the equations backwards in time, sitting at time t we compute the coefficients of finite-difference
analogues of PDEs (38) using the solutions Hi(y, t+ ∆t) obtained from the previous step t+ ∆t.
As a result, the coefficients of the equations for Hi(y, t) are known at time t, and hence Hi(y, t)
can be found by solving a system of linear finite-difference equations with three-diagonal matrix.

In most of the cases studied in this paper we use fixed point iterations while in certain cases
we use a combination of two methods to facilitate the convergence. Appendix B provides further
details of the numerical algorithm and discusses the speed of convergence as well as the optimality
of consumptions c∗it and investment policies θ∗it. The wealth-consumption ratios then allow us to
derive all the equilibrium parameters. The numerical analysis shows that the function on the
left-hand side of the equation for y0 in (43) is a monotone function of y0 and maps interval (0, 1)
into (C0, C1), where C0 < 0 and C1 > 0 are constants. Therefore, if b ∈ (C0, C1) there exists the
unique solution y0 of equation (43). Similarly to Basak and Cuoco (1998), if b /∈ (C0, C1) the
solution to (43) does not exist since the borrower is leveraged to such an extent that will never
be able to repay the debt.

3. Analysis of Equilibrium

In this section we analyze the impact of portfolio constraints in various general equilibrium
settings. In Subsection 3.1 we study the general equilibrium with limited stock market partic-
ipation (θ̄ < 1). In this setting we assume that both the constrained and the unconstrained
investors have identical CRRA preferences and beliefs so that there is no unnecessary corre-
lation between being constrained and having specific risk aversions or beliefs, which allows to
assess the pure effect of constraints. We demonstrate that this smallest deviation from standard
Lucas economy can simultaneously generate countercyclical market prices of risk, procyclical
price-dividend ratios, countercyclical stock-return volatilities and risk premia, as well as excess
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volatility, consistently with the empirical findings.11

In Subsection 3.2 we evaluate the impact of margin requirements and borrowing constraints
(θ̄ > 1). To make constraint (33) with θ̄ > 1 binding we allow the investors to be heterogeneous
in risk aversions and beliefs.12 We demonstrate that constraints produce equilibrium parameters
consistent with empirical findings and decrease the volatility of stock returns. We acknowledge
that both limited stock market participation and margin requirements simultaneously play im-
portant roles in the formation of asset prices, even though for tractability we study these two
constraints separately in Sections 3.1 and 3.2.

Furthermore, our analysis identifies which equilibrium parameters are procyclical or coun-
tercyclical, where following the literature [e.g., Chan and Kogan (2002); Longstaff and Wang
(2008); Bhamra and Uppal (2009)] we call a stochastic Itô’s process Xt procyclical (countercycli-
cal) if instantaneous changes dXt and dδt are positively (negatively) correlated, and hence Xt

increases in good times (when dividend growth shocks are positive) and decreases in bad times
(when dividend growth shocks are negative). In our calibrations the parameters of the dividend
process µδ = 1.8% and σδ = 3.2% are taken from the estimates in Campbell (2003), based on
consumption data in 1891–1998 years, and the time discount parameter is ρ = 0.01.

3.1. Equilibrium with Limited Stock Market Participation

Throughout this subsection we study the implications of limited participation constraint when
the investor is allowed to invest only up to a fraction θ̄ < 1 of wealth in stocks, assuming that that
the investors have identical risk aversions denoted by γ (i.e., γp = γo = γ) and beliefs regarding
the dividend growth rate denoted by µδ (i.e., µpδ = µoδ = µδ). As discussed in the introduction,
the limited participation constraints are typical for pension funds [Srinivas, Whitehouse, and
Yermo (2000)], and include the restricted participation (θ̄ = 0) considered in the literature [e.g.,
Basak and Cuoco (1998); Guvenen (2006, 2009)] as a special case.

The numerical analysis reveals that constraint (33) always binds when θ̄ < 1. Intuitively,
if θ̄ < 1 and the constrained investor does not find the asset attractive enough to bind on the
constraint, the unconstrained investor should also not be willing to allocate more than the fraction
of wealth θ̄ < 1 to stocks since the investors have identical preferences and beliefs. However, the
fact that both investors have θit < 1 contradicts market clearing conditions (11), and hence the
constraint is always binding. For brevity, we do not present the graphs for investment policies
in this subsection since the policies of the constrained investor are simply given by θ∗ot = θ̄,

11Campbell and Cochrane (1999) and Chan and Kogan (2002) present the models with habit formation and
“catching up with the Joneses” preferences respectively, that generate the patterns for price-dividend ratios and
stock return volatilities.

12In a setting with homogeneous preferences and beliefs constraint (33) never binds if θ̄ > 1 since the equilibrium
coincides with the equilibrium in a standard unconstrained Lucas economy with θ∗t = 1. We note also, that our
results are not driven by a seeming correlation between being constrained and having specific risk aversion or beliefs.
In fact, we can assume that both investors face identical constraints θ∗it ≤ θ̄ since under the model parameters in
Subsection 3.2 it turns out that in equilibrium the pessimist’s constraint never binds.
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Figure 1: Equilibrium with Constraints, γ < 1.

Figure 1 presents the equilibrium parameters as functions of consumption share yt when γ < 1. Variable yt
is countercyclical and increases in bad times. The parameters are: µδ = 1.8%, σδ = 3.2% [e.g., Campbell
(2003)], ρ = 0.01, and γ = 0.8.

while for the unconstrained investor they behave very similarly to myopic portfolios κt/(γσt). In
Subsection 3.2 we provide the analysis of optimal portfolios in a richer setting.

We also note that in the limited participation case the constrained investor’s consumption
share yt is countercyclical due to the fact that the constrained investor is less exposed to stock
market fluctuations, and hence negative (positive) dividend shocks shift relative consumption to
the constrained (unconstrained) investor. Consequently, consumption share yt is higher in bad
times and lower in good times, and the equilibrium parameters positively (negatively) correlated
with yt are countercyclical (procyclical). Figures 1 and 2 present equilibrium interest rates,
market prices of risk, price-dividend ratios and the ratios of stock return and dividend growth
volatilities as functions of constrained investor’s consumption share yt for different levels of
constraint tightness θ̄ when risk aversions are less than unity (γ = 0.8) and greater than unity
(γ = 3), respectively. We first analyze the equilibrium parameters for the case γ < 1, presented
on Figure 1, and then for the case γ > 1, presented on Figure 2.

Panel (a) of Figure 1 shows interest rates when γ < 1 and demonstrates that in line with
the intuition in Section 2.1 interest rates decrease with tighter constraints, holding consumption
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share yt fixed, since the constrained investor holds more bonds driving interest rates down. More-
over, the interest rates in the constrained economy are lower in bad times when the constrained
investor’s consumption share yt is high, and hence the constrained investor is more willing to
lend at a lower interest rate. Panel (b) of Figure 1 shows that in line with the intuition in Section
2.1 the market prices of risk increase with tighter constraints. Moreover, consistently with the
empirical literature [e.g., Ferson and Harvey (1991)] the market prices of risk are countercycli-
cal since in states with the dominating constrained investor when yt is high the unconstrained
investor possesses less wealth and hence requires higher market prices of risk to clear the market.

Panel (c) of Figure 1 demonstrates that price-dividend ratios Ψt are procyclical and decreasing
with tighter constraints. The procyclicality of Ψt along with other results on Figure 1 implies
that price-dividend ratios are negatively correlated with market prices of risk κt, risk premia
µt − rt = κtσt, as well as stock return volatilities, consistently with empirical findings [e.g.,
Campbell and Shiller (1988); Schwert (1989); Campbell and Cochrane (1999)]. To understand
the intuition for the procyclicality of Ψt, from the expression for Ψt in terms of investors wealth-
consumption ratios Hit in (41) we observe that the price-dividend ratio is close to the wealth-
consumption ratio of the constrained or the unconstrained investor depending on which one of
them dominates in the market.

When the unconstrained investor dominates (yt is low), the equilibrium will be close to that in
the unconstrained benchmark economy in which case all equilibrium parameters, including price-
dividend ratios, are constant (dotted lines in Figures 1 and 2). However, in states with dominating
constrained investor (yt is high) the price-dividend ratio is close to the constrained investor’s
wealth-consumption ratio. The investment opportunities for the constrained investor worsen
with tighter constraints and higher yt due to the decline in interest rates and inability to fully
benefit from the increase in market prices of risk. Therefore, the constrained investor’s wealth-
consumption ratio decreases with tighter constraints and higher yt via classical substitution effect,
giving rise to procyclical and decreasing in θ̄ price-dividend ratios. This result is due to the fact
that for CRRA investors the intertemporal elasticity of substitution (IES) equals 1/γ, and hence
the income effect dominates for IES < 1 and the substitution effect dominates for IES > 1 while in
the case of IES = 1 both effects perfectly offset each other. When the investment opportunities
worsen, the income effect induces investors to decrease consumption and save more while the
substitution effect induces them to do the opposite due to cheaper current consumption.13

13The relation between wealth-consumption ratios and the attractiveness of investment opportunities can con-
veniently be illustrated in an unconstrained partial equilibrium economy with constant interest rate rt and market
price of risk κt = (µt− rt)/σt, and an investor maximizing the objective (10) subject to budget constraint (7) and
no-bankruptcy constraint. It can easily be verified that when condition ρ − (1 − γ)(r + 0.5κ2/γ) > 0 is satisfied,
the investor’s wealth-consumption ratio is given by:

W

c
=

γ

ρ− (1− γ)(r + 0.5κ2/γ)
,

Hence, if investment opportunities deteriorate due to decrease of rt or κt, the wealth-consumption ratio increases
if the income effect dominates (γ > 1) and decreases if the substitution effect dominates (γ < 1).
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Figure 2: Equilibrium with Constraints, γ > 1.
Figure 2 presents the equilibrium parameters as functions of consumption share yt when γ > 1. Variable yt
is countercyclical and increases in bad times. The parameters are: µδ = 1.8%, σδ = 3.2% [e.g., Campbell
(2003)], ρ = 0.01, and γ = 3.

Panel (d) of Figure 1 shows the ratios σt/σδ of stock return and dividend growth volatilities.
It turns out that stock return volatilities increase with tighter constrains, are countercyclical and
more volatile than dividend growth rates, as in the historical data [e.g., Shiller (1981); Schwert
(1989); Campbell and Cochrane (1999)]. From the expression for stock return volatilities in terms
of price-dividend ratios in (41) it follows that the countercyclicality and excess volatility are due
to convex and procyclical price-dividend ratios shown in panel (c). Intuitively, since the stock
price is given by St = Ψtδt the procyclicality of price-dividend ratio amplifies dividend shocks,
making stocks more volatile. We note that in models with unconstrained investors heterogeneous
in risk aversions and beliefs the volatility is not countercyclical since in both limiting cases y = 0
or y = 1 the equilibrium converges to the equilibrium in a single agent Lucas economy with stock
return volatility equal to dividend growth volatility σδ.

Turning to the case γ > 1 we observe from the results shown on Figure 2 that the constraints
affect the interest rates and market prices of risk in the same way as in the case γ < 1. Under
plausible parameters described above and γ = 3, setting θ̄ = 0 and y = 0.7 [e.g., Mankiw
and Zeldes (1991); Guvenen (2006)] we obtain r = 4.8% and κ = 28%, while the volatilities
of individual consumptions obtained from (31) are σc∗p = 9% and σc∗o = 0.7%. The estimates
in Campbell (2003) show that r = 2% and κ = 36%, while Malloy, Moskowitz, and Vissing-
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Jorgensen (2009) show that σc1 = 3.6% and σc2 = 1.4%. Thus, our model can generate riskless
rates and market prices of risk sufficiently close to those in the data for such a simple model.
However, by contrast with the case of γ < 1, due to the dominance of income effect price-dividend
ratios increase while stock return volatilities decrease with tighter constraints, and the effects are
stronger in bad times, contrary to the empirical evidence. As argued in Remark 2 a model with
recursive preferences can reconcile the empirically observed patterns and the values of equilibrium
parameters.

Remark 2 (Recursive preferences). The discussion above demonstrates that for risk aversion
γ < 1 the model generates empirically plausible patterns for price-dividend ratios and stock return
volatilities while for γ > 1 it generates high market prices of risk and low interest rates close
to those observed in the data. While γ > 1 is more plausible given the evidence in Mehra and
Prescott (1985), we note that the intuition for price-dividend ratios and stock return volatilities
relies only on the relative strength of income and substitution effects. Therefore, the inability
to match simultaneously the dynamic patters and the values of equilibrium parameters should
be attributed to the fact that for CRRA preferences the intertemporal elasticity of substitution
(IES) equals 1/γ and hence high IES needed to generate the substitution effect is only possible
for γ < 1. However, more general recursive preferences allow for IES independent of risk aversion
parameter γ [Epstein and Zin (1989); Duffie and Epstein (1992)]. Our results suggest that in a
model with recursive preferences with both IES and risk aversion exceeding unity [as in Bansal
and Yaron (2004)] it might be possible to match interest rates and market prices of risk, as
well as generate procyclical price-dividend ratios, countercyclical stock return volatilities, excess
volatilities and other patterns consistent with the empirical literature.

3.2. Equilibrium with Margin Requirements and Borrowing Constraints

In this subsection we evaluate the effects of constraint θot ≤ θ̄ with θ̄ > 1, which can be interpreted
as a margin constraint or a borrowing constraint, as discussed in Subsection 2.2. To make this
constraint binding we allow the investors to be heterogeneous both in risk aversions and beliefs.
We also consider the case where the investors have identical risk aversions but heterogeneous
beliefs which allows to separate the effects of heterogeneous beliefs and risk aversions. In contrast
to the limited participation economy of Subsection 3.1 the consumption share of the constrained
investor, yt, is now procyclical, which we verify numerically by showing that volatility σyt is
negative, and hence the instantaneous changes dδt and dyt are positively correlated. Intuitively,
in our model the constrained investor is optimistic and not very risk averse, and hence the optimist
holds a larger share of wealth in stocks than the pessimist, so that θ∗ot ≥ 1 ≥ θ∗pt [panels (e) and (f)
of Figures 3 and 4]. Since the constrained investor is more exposed to stock market fluctuations
bad shocks transfer wealth from the constrained to the unconstrained investor, resulting in the
procyclicality of the optimist’s consumption share yt.
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Figure 3: Equilibrium with Constraints, Heterogeneous Beliefs and Risk Aversions.

Figure 3 presents the equilibrium parameters as functions of consumption share yt. Variable yt is pro-
cyclical and increases in good times. The parameters of dividend process are: µδ = 1.8%, σδ = 3.2% [e.g.,
Campbell (2003)]. Time discount, risk aversions, and beliefs are as follows: ρ = 0.01, γo = 0.8, γp = 3,
µoδ = µδ and µpδ = 0.7µδ.

Figure 3 presents the equilibrium parameters as functions of optimist’s consumption share
yt for the economy populated by investors with heterogeneous risk aversions (γo = 0.8, γp = 3),
and heterogeneous beliefs (µoδ = µδ, µ

p
δ = 0.7µδ). Thus, the optimist is less risk averse than

the pessimist and has correct beliefs, while the pessimist is more risk averse and irrationally
underestimates the dividend growth. Figure 3 presents for comparison the equilibrium in the
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same economy but assuming that both investors have identical risk aversions (γo = 0.8, γp = 0.8).

Panels (a) and (b) of Figure 3 demonstrate that, holding optimist’s consumption share yt
fixed, tighter constraints decrease interest rates rt and increase market prices of risk κt making
these parameters closer to observed values of κ = 36% and r = 2%, consistently with the intuition
in Subsection 2.1. Moreover, panel (a) identifies a non-monotonic patterns in interest rates for
1 < θ̄ < +∞. According to our intuition in Subsection 2.1, the interest rate decreases below the
unconstrained benchmark when the constraint is binding. However, in the limit as y → 0 the
economy is dominated by the unconstrained pessimist, and hence the interest rate reverts back
to the unconstrained benchmark, giving rise to a non-monotonic pattern.

The market price of risk in panel (b) is countercyclical and decreases with tighter constraints,
consistently with the intuition in Section 2.1. Furthermore, panel (c) of Figure 3 demonstrates
that the price-dividend ratio is procyclical and increases with tighter constraints. Similarly to
the limited participation economy analyzed in Subsection 3.1 the impact of constraints on price-
dividend ratios depends on the relative strength of income and substitution effects. For each
investor the intertemporal elasticity of substitution determines the pro- or counter- cyclicality of
the individual wealth-consumption ratios.14 The formula for the price-dividend ratio Ψt in terms
of wealth-consumption ratios in (41) then determines the procyclicality or countercyclicality of
Ψt.

Panel (d) of Figure 3 presets the ratios of stock return and dividend growth volatilities. In
the unconstrained case the investor heterogeneity generates sizable excess volatility which varies
countercyclically for a wide range of consumption shares y ∈ [0.1, 1], as also pointed out in the
literature [e.g., Longstaff and Wang (2008); Bhamra and Uppal (2009, 2010)]. The graphs in
panel (d) demonstrate that margin constraints significantly decrease the stock market volatility
and make it procyclical in those states of the economy where the constraints are binding. This
finding is consistent with the empirical evidence in Hardouvelis and Theodossiou (2002) who
study 22 episodes of changes in margin requirements by the Federal Reserve between 1934 and
1974 and demonstrate that tighter margins lead to lower stock market volatilities. Intuitively,
tighter constraints limit the investors’ ability to trade on their heterogeneity making their stock
holdings more homogeneous. Consequently, the equilibrium parameters become closer to those
in the homogeneous investor economy. In particular, stock return volatility moves closer to the
stock return volatility in the homogeneous investor economy, given by the volatility of dividends
σδ.

Panels (e) and (f) present the optimal investment policies of the optimist and the pessimist,
respectively. The graphs in panel (e) demonstrate that since the optimist is not very risk averse,
the optimist levers up and allocates a higher fraction of wealth to stocks than the pessimist.
Whether the constraint is binding or not in our model is determined by the amount of liquidity

14Similarly to Mele (2007) it can be shown that the procyclicality (countercyclicality) of wealth-consumption
ratios Hit is determined by the countercyclicality (procyclicality) of risk-adjusted discount rates equal to the
coefficient in front of Hit in HJB equations (38).
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Figure 4: Equilibrium with Constraints and Heterogeneous Beliefs.

Figure 4 presents the equilibrium parameters as functions of consumption share yt. Variable yt is pro-
cyclical and increases in good times. The parameters of dividend process are: µδ = 1.8%, σδ = 3.2% [e.g.,
Campbell (2003)]. Time discount, risk aversions, and beliefs are as follows: ρ = 0.01, γo = 0.8, γp = 0.8,
µoδ = µδ and µpδ = 0.7µδ.

available for borrowing. In particular, since the pessimist is the only provider of liquidity for
borrowing, when the economy is dominated by the optimist (i.e. yt is close to 1) the optimist’s
leverage ratio declines and the constraint does not bind. Furthermore, when the economy is
dominated by the pessimist willing to supply liquidity (i.e. yt is close to 0) the optimist can
easily lever up, and hence margin constraint is more likely to bind.

Figure 4 presents the equilibrium parameters for the case where investors have identical risk
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Figure 5: Probability Density Functions for Constrained Rational Investor’s
Consumption Share yt.

Figure 5 presents probability density functions for constrained rational investor’s consumption share yt
for different constraints. The parameters of dividend process are: µδ = 1.8%, σδ = 3.2% [e.g., Campbell
(2003)]. Moreover, ρ = 0.01, γo = 0.8, γp = 3, µoδ = µδ and µpδ = 0.7µδ.

aversions. The properties of equilibrium and the effect of portfolio constraints can be analyzed
as in the previous case. The comparison of results in Figures 3 and 4 demonstrates that the
heterogeneity in risk aversions generates higher stock return volatilities and market prices of
risk. The equilibrium in an economy where investors are heterogeneous only in risk aversions has
similar properties and can be analyzed in the same way as above. It is worth noting that in this
equilibrium the pessimist’s optimal investment policy θ∗pt is always positive and hence short-sale
constraint never binds.

3.3. Survival of Irrational Investors

Finally, we address the question of how the constraints affect the consumption sharing be-
tween the investors. In particular, we study the conditional probability density function (p.d.f.)
of consumption share yt and its evolution in the course of time. There is a growing literature
investigating the long-run impact of irrational investors on equilibrium parameters in uncon-
strained economies [e.g., Kogan, Ross, Wang and Westerfield (2004); Yan (2008); Berrada (2009);
Borovička (2009); Dumas, Kurshev and Uppal (2009); Bhamra and Uppal (2010); Cvitanić et
al (2010); Cvitanić and Malamud (2010b)], which finds that under plausible model parameters
the consumption share of the irrational investor slowly converges to zero. In this subsection we
study the effect of portfolio constraints on the survival of investors.

The p.d.f. function in the unconstrained case serves as a benchmark against which we compare
the results in the economies with constraints. The methodological contribution of this subsection
is that for the case of the unconstrained heterogeneous investor economy we derive the probability
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density function in closed form while the existing literature either derives them by Monte Carlo
simulations or studies their asymptotic properties over large time horizons. Proposition 4 reports
the p.d.f. function for the unconstrained benchmark.

Proposition 4. If the economy is unconstrained and condition (γo − γp)σδ −∆δ 6= 0 is satisfied
the probability density function of consumption share yτ at time τ > t conditional on consumption
share yt at time t is given by:

p(y, τ ; yt, t) =
1√

2c2
2(τ − t)π

(γo
y

+
γp

1− y
)

exp
{
−

(
γo ln y

yt
− γp ln 1−y

1−yt − c1(τ − t)
)2

2c2
2(τ − t)

}
, (47)

where

c1 = (γp − γo)
(
µδ −

σ2
δ

2

)
+

1
2

[(µpδ − µδ
σδ

)2
−
(µoδ − µδ

σδ

)2]
, c2 = (γo − γp)σδ −∆δ. (48)

The expression for the p.d.f. function in (47) demonstrates that the distribution of con-
sumption share yτ depends on time parameter τ and hence, in general the p.d.f. function is
non-stationary with the exception of a measure zero case with c1 = 0 and c2 = 0 when the con-
sumption share yt remains constant. Parameter c1 is a survival index introduced in Yan (2008),
who studies similar economy with homogeneous integer risk aversions and derives p.d.f. functions
via Monte Carlo simulations. Clearly, in the limit as τ goes to infinity only the optimist survives
if c1 > 0 and only the pessimist survives if c1 < 0. When c1 = 0 it can easily be shown that in
the limit each of the investors survives with probability 0.5. We also note that in a similar way
it is also possible to derive p.d.f. functions for various equilibrium parameters, which is however
beyond our scope.

We next consider the economy of Subsection 3.2 where investors are heterogeneous in risk
aversions and beliefs, and face borrowing constraints. We assume for simplicity that the optimist
has correct beliefs about the dividend growth while the pessimist irrationally underestimates it.
Via Monte Carlo simulations we obtain the p.d.f. functions for the constrained economies. We
also note that when θ̄ = 1 the consumption share is a deterministic variable, as demonstrated in
Subsection 2.3. Figure 5 shows probability density functions of yt for time horizons of ten years
[panel (a)] and fifty years [panel (b)], generated via Monte-Carlo simulations. The results on
Figure 5 demonstrate that constraints slow down the elimination of the irrational pessimist whose
consumption share remains significant even after 50 years. Moreover, very tight constraints, e.g.
θ̄ = 0.5, may decrease the optimist’s consumption share in the long run. Intuitively, this effect is
due to the fact that the portfolio constraint reduces the comparative advantage of the optimist’s
more accurate information.
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4. Conclusion

Despite numerous applications of dynamic equilibrium models with heterogeneous investors facing
portfolio constraints, little is known about the equilibrium when we depart from the assumption
of logarithmic preferences. In this work we propose a solution method for computing the equi-
librium in economies with heterogeneous investors that differ in their risk aversions, beliefs, and
portfolio constraints. We completely characterize the equilibrium in terms of investors’ wealth-
consumption ratios satisfying a system of quasilinear equations, which we solve via an iterative
procedure with fast convergence. We evaluate the impact of portfolio constraints on equilibrium
parameters in models with limited stock market participation and margin constraints.

In our limited stock market participation model two investors have identical risk aversions
and beliefs, one investor is unconstrained while the other faces an upper bound on the proportion
of wealth that can be invested in stocks. This minor deviation from the classical Lucas economy
has rich asset pricing implications, and when the intertemporal elasticity of substitution is greater
than unity the model generates equilibrium parameters consistent with the empirical literature.
In a setting with margin constraints we allow the investors to be heterogeneous in risk aversions
and beliefs and study the interaction between investor heterogeneity and portfolio constraints.
We demonstrate that margin constraints lead to complex patterns in equilibrium parameters,
and under plausible model parameters decrease stock return volatilities.

In the unconstrained benchmark economy we derive the equilibrium parameters in terms
of hypergeometric functions by generalizing the approach of Longstaff and Wang (2008), and
provide closed form expression for the p.d.f. function of optimist’s consumption share. Given the
tractability of our analysis we believe that our approach for finding equilibria in constrained and
unconstrained economies can be employed to study similar problems with recursive preferences
and more general dividend processes. The derivation of Cvitanić-Karatzas adjustment parameters
might prove useful in solving portfolio choice problems in partial equilibrium settings. Finally, an
interesting direction for future research is the equilibrium in the economy with two constrained
investors and intermittently binding constraints.
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Appendix A: Proofs

Proof of Proposition 1. Taking into account expression (3) for Brownian motion wot in terms
of Brownian motion wpt we rewrite the processes for state price densities (16) as follows:

dξot = −ξot[rotdt+ κotdw
o
t ], dξpt = −ξpt[(rpt + ∆δtκpt)dt+ κptdw

o
t ]. (A.1)

Optimal consumptions in fictitious economies can be expressed from first order conditions (18).
Substituting c∗it into consumption clearing condition in (11), applying Itô’s Lemma to both sides
and matching the terms after some algebra we obtain:

rt − ρ
Γt

+
yt
γo
fo(ν∗ot) +

1− yt
γp

fp(ν∗pt) +
1
2

(1 + γo
γ2
o

ytκ
2
ot +

1 + γp
γ2
p

(1− yt)κ2
pt

)
= yt

κot
γo

µoδt
σδt

+ (1− yt)
κpt
γp

µpδt
σδt

, (A.2)

yt
κot
γo

+ (1− yt)
κpt
γp

= σδt. (A.3)

Next, from the definition of κit in terms of adjustments ν∗it in (17) and equation (A.3) we obtain:

κot = Γt
(
σδt +

1− yt
γp

(
∆δt +

ν∗ot − ν∗pt
σt

))
, κpt = Γt

(
σδt −

yt
γo

(
∆δt +

ν∗ot − ν∗pt
σt

))
. (A.4)

Substituting κit from (A.4) into the expression for interest rates (A.2) after some algebra we
obtain rt in (21). To find κt, we first note that from the definition of κit in (17):

κt = κot +
µt − µot
σt

− ν∗ot
σt
. (A.5)

Next, to obtain κt we express the disagreement (µt − µot )/σt in terms of dividend disagreement
(µδt − µoδt)/σδt. In particular, by comparing the processes for dividends under the true (1) and
the subjective (2) probability measures, and then doing the same comparison for stock prices in
(5) we find that:

dwt = dwot −
µδt − µoδt
σδt

dt, dwt = dwot −
µt − µot
σt

dt. (A.6)

Comparing the two expressions we obtain the following consistency condition:

µt − µot
σt

=
µδt − µoδt
σδt

. (A.7)

Substituting (A.7) and κot from (A.4) into (A.5) after straightforward algebra we obtain expres-
sion (22) for κt. We next obtain σyt and µyt in (23)–(24) by substituting c∗ot from first order
conditions (18) into the definition of yt in (19), then applying Itô’s Lemma (under the true
probability measure) to both sides of (19) and matching the terms.

The expressions (27) for rit are obtained directly from their expressions in terms of adjust-
ments in (17), while the expressions (28) for κit are obtained from (23) and (A.4) by expressing
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∆δt + (ν∗ot− ν∗pt)/σt in terms of σyt and then substituting into (A.4). Drift parameter µoyt in (29)
is obtained by substituting c∗ot from first order conditions (18) into the definition of yt in (19),
then applying Itô’s Lemma (under the optimist’s beliefs) to both sides of (19) and matching the
terms. Finally, the parameter µpyt is obtained from the following consistency condition, derived
similarly to condition (6): (µoyt − µpyt)/σyt = ∆δt.

Q.E.D.

Proof of Corollary 1. Applying Itô’s Lemma to both sides of the first order conditions for
consumption (18) and matching the terms we find that

σc∗ot =
κot
γo
, σc∗pt =

κpt
γp
. (A.8)

Substituting κot and κpt from (28) into (A.8) we obtain expressions (31) for volatilities σc∗i t.

Q.E.D.

Proof of Proposition 2. We first derive expressions for price-dividend ratio Ψt and stock
return volatility σt. From the market clearing conditions in (11) it follows that St = W ∗ot +W ∗pt.
The price-dividend ratio is then given by:

Ψt =
St
δt

=
c∗ot
δt

W ∗ot
c∗ot

+
c∗pt
δt

W ∗pt
c∗pt

,

which gives Ψt in (41), where Hit denote wealth-consumption ratios. The expression for σt in
(41) is obtained by applying Itô’s Lemma to St = Ψtδt.

To obtain σyt we first substitute κot from (28) into investment policy (39) and obtain:

θ∗ot =
1
σt

(
σδ − σyt(1 +

∂Hot

∂yt

yt
Hot

)
)
. (A.9)

Taking into account that by assumption σt > 0 and σt is given by (41), the inequality θ∗ot ≤ θ̄

(which holds because the optimist is constrained) can be rewritten as follows:

σytGt ≥ (1− θ̄)σδ, where Gt = 1 +
∂Hot

∂yt

yt
Hot
− θ̄ ∂Ψt

∂yt

yt
Ψt
, (A.10)

and Gt is a shorthand notation for G(yt). If the constraint is binding (A.10) holds as equality
from which σyt can be obtained.

On the other hand, from the expression for σyt in terms of adjustments in (23) and the fact
that ν∗ot ≤ 0 [case (c) in Table 1] while ν∗pt = 0 [case (a) in Table 1] it follows that:

σyt ≥
((γo − γp)σδ −∆δ)(1− yt)

γo(1− yt) + γpyt
. (A.11)
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The complementary slackness condition (44) implies that ν∗ot = 0 if the constraint does not bind.
Therefore, the expression for σyt in (23) implies that when constraint does not bind inequality
(A.11) holds as equality. If Gt in (A.10) is positive, inequalities (A.10) and (A.11) imply that:

σyt = max
{((γo − γp)σδ −∆δ)(1− yt)

γo(1− yt) + γpyt
,
(1− θ̄)σδ

Gt

}
, (A.12)

which gives the formula for σyt in Proposition 2 for the case Gt > 0.

We now demonstrate that the constraint does not bind when G(yt) ≤ 0. Suppose, there exists
ỹ such that G(ỹ) ≤ 0 and the constraint is binding. Assuming G(y) is continuous, when y → 0
we obtain that G(y) → 1. Therefore, G(0) > 0 and hence σy(0) can be obtained by passing to
limit y → 0 in (A.12), which yields:

σy(0) = max{((γo − γp)σδ −∆δ)/γ0, (1− θ̄)σδ}. (A.13)

Next, consider four cases.

1. θ̄ < 1.
It follows from (A.13) that σy(0) > 0. However, by assumption, G(ỹ) ≤ 0 and the constraint
is binding. Therefore, inequality (A.10) is satisfied as equality, and hence σy(ỹ) = (1 −
θ̄)σδ/G(ỹ) ≤ 0. Since σy is continuous by assumption, and takes different signs at 0 and
ỹ there exists y∗ such that σy(y∗) = 0. Therefore, it follows from the expression for σt in
(41) that σ(y∗) = σδ. Substituting σ(y∗) into the expression for θ∗ot in (A.9) we obtain that
θ∗o(y

∗) = 1, which leads to contradiction since in equilibrium θ∗ot ≤ θ̄ < 1.

2. θ̄ ≥ 1 and (γo − γp)σδ −∆δ < 0.
It follows from (A.13) that σy(0) ≤ 0. Similarly to the previous case, σy(ỹ) = (1 −
θ̄)σδ/G(ỹ) ≥ 0, and there exists y∗ such that σy(y∗) = 0 and θ∗o(y

∗) = 1 < θ̄. Therefore,
the constraint is not binding, in which case, as argued above,

σy(y∗) =
((γo − γp)σδ −∆δ)(1− y∗)

γo(1− y∗) + γpy∗
6= 0,

which leads to contradiction.

3. θ̄ ≥ 1 and (γo − γp)σδ −∆δ = 0.
Consider the case θ̄ = 1. In this case σy = 0 irrespective of whether constraint binds or
not, and hence formula (40) for σyt holds. Suppose now θ̄ > 1. The case with σy = 0 is
still an equilibrium. Indeed, if σy = 0 then it follows from (A.9) that θ∗ot = 1 < θ̄, therefore
the constraint is not binding and hence σy = 0 because (γo − γp)σδ −∆δ = 0.

4. θ̄ ≥ 1 and (γo − γp)σδ −∆δ > 0.
In this case we show that the constraint never binds even for θ̄ = 1. Clearly, the constraint
with θ̄ > 1 never binds as well. Suppose, there exists ỹ such that G(ỹ) < 0. Then, inequality
(A.10) implies σy(ỹ) ≤ 0, while (A.11) implies that σy(ỹ) > 0, which leads to contradiction.
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As a result, G(y) ≥ 0 for all y ∈ [0, 1). From (A.12) it follows that if G(y) > 0 σyt is equal
to σyt in the unconstrained case, and hence the constraint is not binding.

We now analyze the case G(y) = 0. Suppose, there exists an interval such that G(y) = 0
for all y ∈ [y1, y2]. Then, using the definition of Gt in (A.10) and the fact that Ψt = ytHot+
(1−yt)Hpt, by solving the differential equation Gt = 0 we find that Hot = C0(1−yt)Hpt/yt,
where C0 is a constant. Substituting Hot into the HJB equation (38) we derive a new PDE
for Hpt, which is different from the HJB equation for Hpt. Comparing the two equations
we conclude that the same function cannot satisfy them, which leads to contradiction.
Therefore, G(y) = 0 only in isolated points, in which by continuity σyt coincides with σyt

in the unconstrained case.

Therefore, in all considered cases the constraint does not bind when Gt ≤ 0 which leads to
formula (40) for σyt. The formula for ν∗ot in (42) directly follows from (23) and the fact that
ν∗pt = 0 since the passimist is unconstrained. Finally, equation (43) for y0 is obtained from t = 0
budget constraints, given by:

siS0 + bi = W ∗i0, i = o, p, (A.14)

where si and bi denote time-0 endowments in units of stocks and bonds specified in Subsection
1.2. Substituting S0 = Ψ0δ0, W ∗o0 = y0Ho(y0)δ0, and W ∗p0 = (1− y0)Hp(y0)δ0 into time-0 budget
constraint (A.14) it can easily be observed that both constraints are satisfied whenever equation
(43) for y0 holds.

Q.E.D.

Proof of Proposition 3. Consider the unconstrained benchmark case. The investors’ state
prices follow processes:

dξpt = −ξpt[rtdt+ κptdw
p
t ],

dξot = −ξot[rtdt+ κotdw
o
t ]

= −ξot[(rt − κot∆δ)dt+ κotdw
p
t ].

(A.15)

From the FOC (18) we find that the ratio of marginal utilities λt is given by:

λt ≡
(c∗pt)

−γp

(c∗ot)−γo
= λ0

ξpt
ξot
. (A.16)

Applying Itô’s Lemma to λt in (A.16) we find that λt is a martingale following a GBM process:

dλt = λt∆δdw
p
t . (A.17)

From the definition of λt in (A.16), first order conditions (18) and the consumption clearing
condition c∗ot + c∗pt = δt we obtain:

c∗pt
δt
≡ 1− yt = f(λ̃t), λ̃t = λ

1/γo
t δ

γp/γo−1
t , (A.18)
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where f(z) is an implicit function satisfying equation:

zf(z)γp/γo + f(z) = 1, (A.19)

and λt and δt follow GBM processes (A.17) and (32) and hence are explicitly given by:

λτ = λte
−0.5∆2

δ(τ−t)+∆δ(w
p
τ−wpt ), δτ = δte

(µpδ−0.5σ2
δ )(τ−t)+σδ(wpτ−wpt ). (A.20)

Since the financial market is complete, the price-dividend ratio can be obtained from the present-
value formula:

St
δt

=
1
ξpt
Ept

[∫ +∞

t
ξpτ

δτ
δt
dτ
]
, (A.21)

where Ept [·] denotes the expectation operator under the pessimist’s probability measure. Taking
into account FOC (18) and expression (A.18) we rewrite present-value formula (A.21) as follows:

St
δt

=
δ
−γp
t

(c∗pt)−γp
Ept

[∫ +∞

t
e−ρ(τ−t)

(c∗pτ
δτ

)−γp(δτ
δt

)1−γp
dτ
]
,

= (1− yt)γpEpt
[∫ +∞

t
e−ρ(τ−t)f

(
λ̃t

(λτ
λt

)1/γo(δτ
δt

)γp/γo−1)−γp(δτ
δt

)1−γp
dτ
]
.

(A.22)

We next substitute λτ and δτ from (A.20) into (A.22) and rewrite the conditional expectation
operator as an integral, noting that z = (wpτ −wpt )/

√
τ − t is normally distributed as z ∼ N(0, 1).

After some algebra we obtain:

St
δt

= (1− y)γp
∫ +∞

0

[∫ +∞

−∞
e−ρτf

(
λ̃te

a1τ+a2
√
τ(z−(1−γp)σδ

√
τ)
)−γp

e−0.5(z−(1−γp)σδ
√
τ)2

dz
]
×

1√
2π
e((1−γp)µpδ−0.5γp(1−γp)σ2

δ)τdτ,

(A.23)
where constants a1 and a2 are given in (46). Now we change the integration variable z in the
inner integral in (A.23) to variable u given by u = a1τ + a2

√
τ(z− (1− γp)σδ

√
τ) and after some

algebra and the change in the order of integration we obtain:

St
δt

=
(1− yt)γp
|a2|
√

2π

∫ +∞

0

[∫ +∞

−∞
f(λ̃teu)−γpe

− (u−a1τ)
2

2a22τ du
] 1√

τ
e−(ρ−(1−γp)µpδ+0.5γp(1−γp)σ2

δ ))τdτ

=
(1− yt)γp
|a2|
√

2π

∫ +∞

−∞
f(λ̃teu)−γpe

a1
a22
u
F (u)du,

(A.24)
where F (u) is given by:

F (u) =
∫ +∞

0

1√
τ
e
−bτ− u2

2a22τ dτ, (A.25)

and b is given in (46). Following the derivation of price-dividend ratios in Longstaff and Wang
(2008), using formulas 3.471.9 and 8.469.3 from Gradshteyn and Ryzhik (2000) we obtain:

F (u) =
√
π

b
e
−
√

2b
|a2|
|u|
.
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We then substitute F (u) into expression (A.24), split the integral into a sum of two integrals:
from −∞ to 0 and from 0 to +∞ and obtain:

St
δt

=
(1− yt)γp
|a2|
√

2π

[∫ +∞

0
f(λ̃teu)−γpeϕ−udu+

∫ +∞

0
f(λ̃te−u)−γpe−ϕ+udu

]
, (A.26)

where φ± are defined in (46). We now demonstrate how to compute the first integral in (A.26) by
taking x = f(λ̃teu)/(1− yt) as a new integration variable, while the second integral is computed
analogously. To perform the change of variable we first find f ′(z) by differentiating equation
(A.19):

f ′(z) = − f(z)γp/γo+1

γp
γo

(zf(z)γp/γo + f(z)) + (1− γp
γo

)f(z)
= − f(z)γp/γo+1

γp
γo

+ (1− γp
γo

)f(z)
, (A.27)

where the last equality uses equation (A.19) for function f(z) to simplify the denominator.
Moreover, from the definition of f(z) in (A.19) setting z = λ̃te

u we express eu in terms of new
variable x as follows:

eu =
1− x(1− yt)

λ̃t(x(1− yt))γp/γo
. (A.28)

Using (A.28) and (A.27) we obtain:

dx =
λ̃te

uf ′(λ̃teu)
1− yt

du = − (1− x(1− yt))x
γp
γo

+ (1− γp
γo

)x(1− yt)
du (A.29)

We determine the new limits of integration by passing to the limit in equation (A.28). When
u→ +∞ we obtain that x→ 0, and when u→ 0 it follows from (A.18) and (A.19) that x→ 1.
Finally, noting from (A.18) and (A.19) that λ̃t(1− yt)γp/γo ≡ yt, after the change of variable we
obtain:∫ +∞

0
f(λ̃teu)−γpeϕ−udu =

(1− yt)−γp
y
ϕ−
t

∫ 1

0
x
−γp−1− γp

γo
ϕ−(1−x(1−yt))ϕ−−1

(γp
γo

+
(

1−γp
γo

)
x(1−yt)

)
dx.

This integral which we denote by I− can be expressed in terms of hypergeometric functions:

I− =
(1− yt)−γp

y
ϕ−
t

[
−γp
γo

1
γp + γp

γo
ϕ−

2F1

(
1− ϕ−,−γp −

γp
γo
ϕ−, 1− γp −

γp
γo
ϕ−; 1− yt

)
+

(
1− γp

γo

) 1− yt
1− γp − γp

γo
ϕ−

2F1

(
1− ϕ−, 1− γp −

γp
γo
ϕ−, 2− γp −

γp
γo
ϕ−; 1− yt

)]
,

(A.30)

where the hypergeometric function can be defined using the following Euler’s formula [e.g.,
Abramowitz and Stegun (1965)]:

2F1(a, b, c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

xb−1(1− x)c−b−1

(1− xz)a dx.

In a similar way we express the second integral in (A.26). We then simplify the resulting expres-
sion by employing the following formula from Abramowitz and Stegun (1965):

2F1(a, b, c; z)(1− z)a+b−c = 2F1(c− a, c− b, c; z).

After some algebra we obtain the expression for price-dividend ratio (45) in Proposition 3.
Q.E.D.
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Proof of Proposition 4. We first compute the cumulative conditional distribution function
Prob(yτ ≤ y|Ft). From the definition of function f(·) and λ̃t in (A.18) we find that yτ = 1−f(λ̃τ ).
Similarly to (A.6) we obtain that

wpt = wt +
µδ − µpδ
σδ

t.

Substituting wpt into the expressions for processes λτ and δτ in (A.20) from the definition of λ̃τ
in (A.18) we obtain:

λ̃τ = λ̃te
(c1(τ−t)+c2(wτ−wt))/γo = λ̃te

(c1(τ−t)+|c2|z
√
τ−t)/γo , (A.31)

where z ∼ N(0, 1), and c1 and c2 are given in (48).

Then, we compute the cumulative distribution function as follows:

Prob(yτ ≤ y|Ft) = Prob(1− y ≤ f(λ̃τ )|Ft) = Prob(λ̃τ ≤ f−1(1− y)|Ft), (A.32)

where f−1(·) is an inverse of function f(·) defined in (A.19), and the last equality in (A.32) uses
the fact that f(z) is a monotonically decreasing function since f ′(z) < 0, as follows from (A.27).
To derive f−1(1− y) we substitute z = f−1(1− y) into equation (A.19) and using the fact that
by definition f(f−1(1− y)) = 1− y we obtain:

f−1(1− y) =
y

(1− y)γp/γo
. (A.33)

Similarly, from the definition of λ̃t in (A.18) and the equation for f(z) in (A.19) we find that

λ̃t =
yt

(1− yt)γp/γo
. (A.34)

Substituting λ̃τ from (A.31), λ̃t from (A.34) and f−1(1− y) from (A.33) into (A.32) we obtain:

Prob(yτ ≤ y|Ft) = Prob
(
e(c1(τ−t)+|c2|z

√
τ−t)/γo ≤ y

(1− y)γp/γo
(1− yt)γp/γo

yt
|Ft
)

= Prob
(
z ≤

γo ln y
yt
− γp ln 1−y

1−yt − c1(τ − t)
|c2|
√
τ − t |Ft

)
= Φ

(γo ln y
yt
− γp ln 1−y

1−yt − c1(τ − t)
|c2|
√
τ − t

)
,

(A.35)

where Φ(·) denotes the cumulative distribution function for the standard normal distribution.
Differentiating the last expression in (A.35) we obtain p.d.f. function (47).

Q.E.D.
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Appendix B: Numerical Method

We first demonstrate how to obtain the boundary conditions for the HJB equations, and then
how to cope with the nonlinearity of equations by employing the method of successive iterations.
There are two ways of addressing the problem of finding boundary conditions. The first one
is to replace wealth-consumption ratios Hi(y, t) by H̃i(y, t) = y(1 − y)Hi(y, t). Then, after
straightforward algebra we obtain PDEs for H̃i(y, t) and solve them with boundary conditions
H̃i(0, t) = 0 and H̃i(1, t) = 0. From H̃i we can back out the wealth-consumption ratios.

Another way is to obtain the boundary conditions by passing to the limit in equations (38)
when yt approaches 0 or 1. To compute the limits we assume that the wealth-consumption ratios
are such that Hi(y, t) are twice continuously differentiable in the interval (0, 1), and there exist
limits y2∂2Hi(y, t)/∂y2 → 0 and y∂Hi(y, t)/∂y → 0 as y → 0, and (1 − y)2∂2Hp(y, t)/∂y2 → 0,
(1 − y)∂2Ho(y, t)/∂y2 → 0 and (1 − y)∂Hp(y, t)/∂y → 0, as y → 1. After we compute the
solutions we also verify numerically that these assumptions are satisfied for the case when γo > 1
and γp > 1. When γi < 1 it turns out that Hi(y) may become unbounded when y approaches
0 or 1, and hence in this case we always use the first way of dealing with boundary conditions,
and after computing the solution we verify that the solution grows very slowly so that boundary
conditions H̃i(0, t) = 0 and H̃i(1, t) = 0 are indeed satisfied.

After trying both ways of dealing with the boundary conditions the first way appears to be
more tractable. However, for completeness we derive the boundary conditions by passing to the
limit as yt converges to 0 or 1 in several important cases since explicit boundary conditions for the
wealth-consumption ratios allow to obtain approximate closed-form price-dividend ratios when
y is close to 0 or 1. Interestingly, even in the case of boundary condition misspecification the
numerical method with incorrect boundary conditions converges in the interior of (0, 1) to the
correct solutions. Intuitively, the boundary condition misspecification is alleviated by the fact
that the limiting cases y = 0 or y = 1 are approached with zero probability [see Figure 5].

To find time-independent solutions in the backwards in time iterations method we fix a large
horizon T , pick two functions ho(y) and hp(y), and specify terminal conditions:

Hi(y, T ) = hi(y), i = o, p, (B.1)

where functions hi(y) are chosen to be continuous and differentiable, as discussed below. Assum-
ing γo > 1 and γp > 1 passing to the limit y → 0 in equations (38) we obtain simple ordinary
differential equations for Hi(0, t) solving which yields boundary conditions at y = 0:

Hi(0, t) = hi(0)e−βi(T−t) +
1− e−βi(T−t)

βi
, i = o, p, (B.2)

where

βo =
γo − 1

2γ2
o

κ2
o0+

ρ− (1− γo)ro0
γo

, βp =
1
γp

(
ρ+

(γp − 1)γp
2

σ2
δ+(γp − 1)

[
ρ+γpµ

p
δ−

γp(γp + 1)
2

σ2
δ

])
.

(B.3)
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and

κo0 = γo

(
σδ −max

{(γo − γp)σδ −∆δ

γo
, (1− θ̄)σδ

})
,

ro0 = ρ+ γpµ
p
δ −

γp(γp + 1)
2

σ2
δ − θ̄σδ

(
(γo − γp)σδ −∆δ −max{(γo − γp)σδ −∆δ, γo(1− θ̄)σδ}

)
.

To obtain boundary conditions at y = 1 we first consider the case when θ̄ > 1, and hence
the constraint is not binding around y = 1 (i.e. ν∗ot = 0) since the economy will converge to the
homogeneous investor economy with θ∗ot = 1. Passing to the limit y → 1 and solving the resulting
ODE for Hi(1, t) we obtain:

Hi(1, t) = hi(1)e−β̂i(T−t) +
1− e−β̂i(T−t)

β̂i
, i = o, p, (B.4)

where

β̂o =
1
γo

(
ρ+

(γo − 1)γo
2

σ2
δ + (γo − 1)

[
ρ+ γoµ

o
δ −

γo(γo + 1)
2

σ2
δ

])
,

β̂p =
1
γp

(
ρ+

γp − 1
2γp

(γoσδ −∆δ)2 + (γp − 1)
[
ρ+ γoµ

o
δ −

γo(γo + 1)
2

σ2
δ

])
.

(B.5)

Expressions in (B.2), (B.3), (B.4) and (B.5) demonstrate that conditions βi ≥ 0 and β̂i ≥ 0 are
necessary for the existence of time-independent solutions of equations (38) with finite boundary
values. We then simply the analysis by setting hi(y) as follows:

hi(y) =
1− y
βi

+
y

β̂i
, i = o, p. (B.6)

The terminal functions in (B.6) make Hi(0, t) in (B.2) and Hi(1, t) in (B.4) independent of time
t and horizon T , and equal to the limit of Hi(0, T ) when T → +∞.

As an additional illustration we derive boundary conditions in the case when θ̄ < 1 and
γp = γo > 1, and hence the constraint is always binding around y = 1. We multiply the
equations for Hp(y, t) and Ho(y, t) by (1− y)2 and (1− y), respectively, and passing to the limit
y → 1 we obtain:

∂Ho(1, t)
∂y

= (γ − 1)Ho(1, t), (1− θ̄)(γ − 1)Hp(1, t) = 0. (B.7)

We then simply set hi(y) as follows:

ho(y) =
1
βo

+
( 1

β̂o
− 1
βo

)
y −

( 1
βo

+
γo − 2

β̂o

)
y(1− y), hp(y) =

1− y
βp

. (B.8)

The terminal functions in (B.8) are chosen in such a way that they make Hi(0, t) in (B.2)
independent of time t and horizon T , and equal to the limit of Hi(0, T ) when T → +∞, and at
the same time hi(y) satisfy conditions in (B.7).
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For simplicity, in the description of the numerical method we omit subscript i. We let the
time and state variable increments denote ∆t ≡ T/M and ∆y ≡ 1/N , where M and N are integer
numbers, and index time and state variables by t = 0,∆t, 2∆t, ..., T and y = 0,∆y, 2∆y, ..., 1,
respectively. Next, we derive discrete-time analogues of HJB equations and boundary conditions
replacing derivatives by their finite-difference analogues as follows:

d
Hn,k+1 −Hn,k

∆t
+an,k+1

Hn+1,k − 2Hn,k +Hn−1,k

∆y2
+bn,k+1

Hn+1,k −Hn−1,k

2∆y
+cn,k+1Hn,k+1 = 0,

(B.9)
Hn,M = hn, H0,k = e0,k, HN,k = êN,kHN−1,k + ẽN,k, (B.10)

where n = 1, 2, ..., N − 1, k = 1, 2, ...,M − 1, Hn,k = H(n∆y, k∆t). The coefficients in (B.9)
correspond to coefficients in equation (38) and are computed using the solution Hn,k+1, while
coefficients in (B.10) are obtained by replacing terminal condition (B.1) and boundary conditions
at y = 0 and y = 1 by their finite-difference analogues. Parameter d in (B.9) specifies the solution
method. The cases d = 0 and d = 1 correspond to pure fixed point and backwards in time
iterations, respectively, while 0 < d < 1 describes a method in between the two. The system of
equations in (B.9)–(B.10) is solved backwards in time, starting at k = M − 1. Given solution
Hn,k+1 we compute all the coefficients in (B.9) at step k + 1, and hence at step k function Hn,k

for fixed k solves a system of linear algebraic equations. We then iterate until convergence.

For the models in Subsection 3.2 we use fixed point method d = 0 with step 0 conjectures
given by (B.6) and (B.8). For the models in Section 3.1 the fixed point iterations do not converge
for these conjectured functions and therefore we use a combination of fixed point and backward
iterations by setting d = 0.01 and choosing T = 50, which significantly improves the convergence.
The convergence is assessed by computing the maximum weighted difference between wealth-
consumption ratios 10 years (or iterations when d = 0) apart: ε1 = 0.5 max

y
|Ho(y, t)−Ho(y, t+

10)|+0.5 max
y
|Hp(y, t)−Hp(y, t+10)|. In the backwards iterations case we also looked at another

measure given by ε2 = 0.5 max
y
|(Ho(y, t) − Ho(y, t + ∆t))/∆t| + 0.5 max

y
|Hp(y, t) − Hp(y, t +

∆t)/∆t|. We solve the model setting N = 3000 and for both convergence measures get typical
precisions around ε ∼ 10−9 after a couple of seconds of Matlab calculations on a PC. In the cases
listed in Subsection 2.3 where the closed-form solutions are available we verify that our numerical
method converges to the same solutions.

We also verify via Monte-Carlo simulations that the transversality conditions for HJB equa-
tions (35) are satisfied. Moreover, for the cases that we study in Section 3 our numerical analysis
reveals that whenever θ̄ > 1 or θ̄ < 1 and γi > 1 for i = o, p, the wealth consumption ratios are
continuous and smooth function of y so that Hi(y) ∈ C2(0, 1) ∩ C[0, 1], which we verify for very
fine grid steps ∆y. By sufficient optimality conditions in Fleming and Soner (2005) [Verification
Theorem 5.1] the smoothness and transversality conditions imply the optimality of c∗it and θ∗it.
However, when γo < 1 or γp < 1, wealth-consumption ratios turns out to be continuous and
twice differentiable in (0, 1) but unbounded when y approaches 0 or 1, violating the conditions
in Fleming and Soner, and hence this case requires a more subtle verification theorem.

40



References

Abramowitz, M., and I.A Stegun, 1965, Handbook of Mathematical Functions, Dover Publica-
tions, New York.

Bansal, R., and A. Yaron, 2004, “Risk for the Long Run: A Potential Resolution of Asset
Pricing Puzzles,” Journal of Finance, 59, 1481-1509.

Basak, S., 2000, “A Model of Dynamic Equilibrium Asset Pricing with Heterogeneous Beliefs
and Extraneous Risk,” Journal of Economic Dynamics and Control, 24, 63-95.

Basak, S., 2005, “Asset Pricing with Heterogeneous Beliefs,” Journal of Banking and Finance,
29, 2849-2881.

Basak, S., and B. Croitoru, 2000, “Equilibrium Mispricing in a Capital Market with Portfolio
Constraints,” Review of Financial Studies, 13, 715-748.

Basak, S., and B. Croitoru, 2006, “On the Role of Arbitrageurs in Rational Markets,” Journal
of Financial Economics, 81, 143-173.

Basak, S., and D. Cuoco, 1998, “An Equilibrium Model with Restricted Stock Market Partici-
pation,” Review of Financial Studies, 11, 309-341.

Berrada, T., 2009, “Bounded Rationality and Asset Pricing with Intermediate Consumption,”
Review of Finance, 13, 693-725.

Berrada, T., J. Hugonnier, and M. Rindisbacher, 2007, “Heterogeneous Preferences and Equi-
librium Trading Volume,” Journal of Financial Economics, 83, 719-750.

Bhamra, H.S., and R. Uppal, 2009, “The Effect of Introducing a Non-Redundant Derivative on
the Volatility of Stock-Market Returns When Agents Differ in Risk Aversion,” Review of
Financial Studies, 22, 2303-2330.

Bhamra, H.S., and R. Uppal, 2010, “Asset Prices with Heterogeneity in Preferences and Beliefs,”
Working Paper, University of British Columbia.
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Cvitanić, J., and I. Karatzas, 1992, “Convex Duality in Constrained Portfolio Optimization,”
Annals of Applied Probability, 2, 767-818.
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